Answer:
a) W = 25.5 lbf
b) W = 150 lbf
Explanation:
Given data:
Mass of astronaut = 150 lbm
local gravity = 5.48 ft/s^2
a) weight on spring scale
it can be calculated by measuring force against local gravitational force which is equal to weight of body
W = mg

b) As we know that beam scale calculated mass only therefore no change in mass due to variation in gravity
thus W= 150 lbf
Answer:
Metals have high melting points thus unlikely to degrade when temperatures increase, they can be fabricated and are cost effective due to availability.
Explanation:
Aluminum is the most abundant in the Earth's crust with good thermal and electric properties. It is soft, malleable ,ductile and lighter making it a vital metal in construction industry. An alloy of copper and tin, bronze is a better connector of heat and electricity ,commonly used in automobile industry for bearings and springs production. Steel a carbon alloy has applications in forging and automotive.
Answer:
576.21kJ
Explanation:
#We know that:
The balance mass 
so, 

#Also, given the properties of water as;

#We assume constant properties for the steam at average temperatures:
#Replace known values in the equation above;
#Using the mass and energy balance relations;

#We have
: we replace the known values in the equation as;

#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ
Answer:
The elevation at the high point of the road is 12186.5 in ft.
Explanation:
The automobile weight is 2500 lbf.
The automobile increases its gravitational potential energy in
. It means the mobile has increased its elevation.
The initial elevation is of 5183 ft.
The first step is to convert Btu of potential energy to adequate units to work with data previously presented.
British Thermal Unit -
Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:
Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.
is the final elevation and
is the initial elevation.
Replacing W in the Ep equation
Finally, the next step is to replace the variables of the problem.
The elevation at the high point of the road is 12186.5 in ft.