Answer:
1. High friction
2. High extrusion temperature
Explanation:
Surface cracking on extruded products are defects or breakage on the surface of the extruded parts. Such cracks are inter granular.
Surface cracking defects arises from very high work piece temperature that develops cracks on the surface of the work piece. Surface cracking appears when the extrusion speed is very high, that results in high strain rates and generates heat.
Other factors include very high friction that contributes to surface cracking an d chilling of the surface of high temperature billets.
Answer:
False
Explanation:
When you're studying, you need to make sure that you can focus properly. This means that you shouldn't be hungry or too full and that you should be well-rested, in a quiet room with good lighting and no distractions. Noise is never good when you need to memorize something. Some people can partially ignore it as long as it isn't too loud, but it will begin to bother them eventually. That's why it's better to study in a quiet room.
Answer:
The publication of a parody for commercial gain does not fall within the protection afforded by Section 107, as it is used for commercial gain.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:
