Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees
The amount of friction depends on the force pushing the surfaces together. If this force increases, the hills and valleys of the surfaces can come into closer contact. The close contact increases the friction between the surfaces.
I'm pretty sure the answer is D. The equation for acceleration is velocity divided by time. So the answer is D.
The acceleration of the object if the net force is decreased = 0.13 m/s²
<h3>Further explanation</h3>
Given
A net force of 0.8 N acting on a 1.5-kg mass.
The net force is decreased to 0.2 N
Required
The acceleration of the object if the net force is decreased
Solution
Newton's 2nd law :

The mass used in state 1 and 2 remains the same, at 1.5 kg
ΣF=0.8 N
m=1.5 kg
The acceleration, a:

ΣF=0.2 N
m=1.5 kg
The acceleration, a:

You just need to replace x with 5 in each function
.5^5 - 11
-5-3
.5 ^-6
-8
64 - 8 = 56 A Celcius
Hope this helps