Answer: 40.68 kPa
Explanation:
Given that,
Original volume of gas V1 = 21.7 mL
Original pressure of gas P1 = 98.8 kPa
New volume of gas V2 = 52.7 mL
New pressure of gas P2 = ?
Since pressure and volume are given while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
98.8 kPa x 21.7 mL = P2 x 52.7L
2143.96 kPa L = 52.7 L x P2
P2 = 2143.96 kPa L / 52.7 L
P2 = 40.68 kPa
Thus, the new pressure of the gas is 40.68 kPa.
Follow
these steps to solve the given equation:
Multiply
the two decimal figures together and find the sum of the exponents, that is,
(1.5
* 1.89) * 10 ^4+3
(2.835)
* 10^7
10^7
can also be written as e.70
'e'
stands for exponential.
Therefore,
we have 2. 835 e 7.0 = 2.8 e 7.0.
Based on the calculations above, the correct option is A.
Igneous rocks from cooling magma<span>. </span>Granite<span> is an igneous rock </span>formed<span> from </span>magma<span>that </span>cooled slowly<span> underground. As the </span>magma slowly cools<span>, large mineral crystals form.
</span>
Answer:
pKa of the acid HA with given equilibrium concentrations is 6.8
Explanation:
The dissolution reaction is:
HA ⇔ H⁺ + A⁻
So at equilibrium, Ka is calculated as below
Ka = [H⁺] x [A⁻] / [HA] = 2.00 x 10⁻⁴ x 2.00 x 10⁻⁴ / 0.260
= 15.38 x 10⁻⁸
Hence, by definition,
pKa = -log(Ka) = - log(15.38 x 10⁻⁸) = 6.813
Answer:
you can do a celser lava lamp its really easy, i can give you a link if you need?
Explanation: