Answer:
b. Both stars will have the same shift.
Explanation:
It's a very simple problem to solve. Star 1 is approaching toward Earth with a speed v, so let's assume that the change in Doppler Shift is +F and Star 2 is moving away so the change in Doppler shift is -F. But it's time to notice the speed of both stars and that is same but only directions are different. speed is the main factor here. The magnitude of both shifts is F as we can see and + and - are showing there direction of motion. So, because of same amount of speed, both stars will have same shift magnitude. (Just the directions are different)
-- The position of the sun was originally the primary influence in determining
when people went to sleep and when they woke up. Although it no longer
directly influences us, that pattern is so deeply ingrained in our make-up
that our behavior still largely coincides with the positions of the sun.
-- The position of the Moon was originally the primary influence in determining
the cycle of human female physiology. Although it no longer directly influences
us, that pattern is so deeply ingrained in human make-up that the female cycle
still largely coincides with the positions of the Moon.
Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.