1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
14

Does a feather fall as fast as a rock in a vacuum? If so why?

Physics
1 answer:
7nadin3 [17]2 years ago
3 0

Answer:

No.

Explanation:

A feather is less dense and thus less force exerted while a rock is very dense thus exerting more force .

You might be interested in
Which of the following is NOT one of the four elements of emotion?
Nezavi [6.7K]

Answer:

Attention

Explanation:

Hello there, fellow peer! The answer to question is attention. Let's say someone is the control. The behavioral expression is an element of expression, so the control will feel emotions. Subjective Experience is when someone felt the way you feel and they are trying to help you. That is a type of emotion which can lead to empathy for you. This is also not the answer. Physiological Arousal is also not the answer because this is when you can feel what someone else is feeling and you try to give them therapy.

Using the process of elimination, our answer is therefore attention.

4 0
3 years ago
A book rests on a table, exerting a downward force on the table. the reaction to this force is:
lapo4ka [179]
The upward force the table exerts on the ground!
Equal and opposite forces.
4 0
3 years ago
Suppose that a wind is blowing in the direction S45°E at a speed of 30 km/h. A pilot is steering a plane in the direction N60°E
Kay [80]

Answer:

The true course: 40.29^\circ north of east

The ground speed of the plane: 96.68 m/s

Explanation:

Given:

  • V_w = velocity of wind = 30\ km/h\ S45^\circ E = (30\cos 45^\circ\ \hat{i}-30\sin 45^\circ\ \hat{j})\ km/h = (21.21\ \hat{i}-21.21\ \hat{j})\ km/h
  • V_p = velocity of plane in still air = 100\ km/h\ N60^\circ E = (100\cos 60^\circ\ \hat{i}+100\sin 60^\circ\ \hat{j})\ km/h = (50\ \hat{i}+86.60\ \hat{j})\ km/h

Assume:

  • V_r = resultant velocity of the plane
  • \theta = direction of the plane with the east

Since the resultant is the vector addition of all the vectors. So, the resultant velocity of the plane will be the vector sum of the wind velocity and the plane velocity in still air.

\therefore V_r = V_p+V_w\\\Rightarrow V_r = (50\ \hat{i}+86.60\ \hat{j})\ km/h+(21.21\ \hat{i}-21.21\ \hat{j})\ km/h\\\Rightarrow V_r = (71.21\ \hat{i}+65.39\ \hat{j})\ km/h

Let us find the direction of this resultant velocity with respect to east direction:

\theta = \tan^{-1}(\dfrac{65.39}{71.21})\\\Rightarrow \theta = 40.29^\circ

This means the the true course of the plane is in the direction of 40.29^\circ north of east.

The ground speed will be the magnitude of the resultant velocity of the plane.

\therefore Magnitude = \sqrt{71.21^2+65.39^2} = 96.68\ km/h

Hence, the ground speed of the plane is 96.68 km/h.

5 0
3 years ago
What affects the vertical velocity of a projectile over time?<br>---​
kobusy [5.1K]
The vertical velocity is affected by the acceleration of gravity (ignoring the effects of air resistance usually)
6 0
2 years ago
The drawing shows a large cube (mass = 21.0 kg) being accelerated across a horizontal frictionless surface by a horizontal force
MaRussiya [10]

Answer:

The blocks must be pushed with a force higher than 359 Newtons horizontally in order to accomplish this friction levitation feat.

Explanation:

The first step in resolving any physics problem is to draw the given scenario (if possible), see the attached image to have an idea of the objects and forces involved.

The large cube in red is being pushed from the left by a force \vec{P} whose value is to be found. That cube has its own weight \vec{w}_1=m_1\vec{g}, and it is associated with the force of gravity which points downward. Newton's third law stipulates that the response from the floor is an upward pointing force on the cube, and it's called the normal force \vec{N}_1.

A second cube is being pushed by the first, and since the force \vec{P} is strong enough it is able to keep such block suspended as if it were glued to the first one, due to friction. As in the larger cube, the smaller one has a weight \vec{w}_2=m_2\vec{g} pointing downwards, but the normal force in this block doesn't point upwards since its 'floor' isn't below it, but in its side, therefore the normal force directs it to the right as it is shown in the picture. Normal forces are perpendicular to the surface they contact. The final force is the friction between both cubes, that sets a resistance of one moving parallel the other. In this case, the weight of the block its the force pointing parallel to the contact surface, so the friction opposes that force, and thus points upwards. Friction forces can be set as Fr=\mu~N, where \mu is the coefficient of static friction between the cubes.

Now that all forces involved are identified, the following step is to apply Newton's second law and add all the forces for each block that point in the same line, and set it as equal its mass multiplied by its acceleration. The condition over the smaller box is the relevant one so its the first one to be analyzed.

In the vertical component: \Sigma F^2_y=Fr-w_2=m_2 a_y Since the idea is that it doesn't slips downwards, the vertical acceleration should be set to zero a_y=0, and making explicit the other forces: \mu N_2-m_2g=0\quad\Rightarrow (0.710)N_2-(4.5)(10)=0\quad\Rightarrow N_2=(4.5)(10)/(0.710)\approx 63.38 [N]. In the last equation gravity's acceleration was rounded to 10 [m/s^2].

In its horizontal component: \Sigma F^2_x=N_2=m_2 a_x, this time the horizontal acceleration is not zero, because it is constantly being pushed. However, the value of the normal force and the mass of the block are known, so its horizontal acceleration can be determined: 63.38=(4.5) a_x \quad \Rightarrow a_x=(63.38)/(4.5)\approx 14.08 [m/s^2]. Notice that this acceleration is higher than the one of gravity, and it is understandable since you should be able to push it harder than gravity in order for it to not slip.

Now the attention is switched to the larger cube. The vertical forces are not relevant here, since the normal force balances its weight so that there isn't vertical acceleration. The unknown force comes up in the horizontal forces analysis: \Sigma F_x=P=m a_x, since the force \vec{P} is not only pushing the first block but both, the mass involved in this equation is the combined masses of the blocks, the acceleration is the same for both blocks since they move together; P=(21.0+4.5) 14.08\approx 359.04 [N]. The resulting force is quite high but not impossible to make by a human being, this indicates that this feat of friction suspension is difficult but feasable.

4 0
3 years ago
Other questions:
  • If you have a book "sitting" on a table, the two forces acting on the book will be its
    10·2 answers
  • What is sex And new born baby why connected to women's veins?
    10·1 answer
  • A tank of volume 0.25 ft is designed to contain 50 standard cubic feet of air. The temperature is 80° F.Calculate the pressure i
    15·1 answer
  • How many calories is required to raise the temp from 11to 23?
    15·1 answer
  • At what speed does a 1800 kg compact car have the same kinetic energy as a 15000 kg truck going 21 km/h ? Express your answer in
    9·1 answer
  • NEED HELP SCIENCE
    11·1 answer
  • I WILL GIVE YOU BRAINLIEST!!
    7·1 answer
  • Give an example of a positive slope
    10·2 answers
  • How are you progressing towards the goals you set for yourself? What do you need to keep on track?
    12·2 answers
  • What did hegel and kant have in common? they both were determined to disprove marxist theory. they both thought that only histor
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!