Answer:
lowest frequency = 535.93 Hz
distance between adjacent anti nodes is 4.25 cm
Explanation:
given data
length L = 32 cm = 0.32 m
to find out
frequency and distance between adjacent anti nodes
solution
we consider here speed of sound through air at room temperature 20 degree is approximately v = 343 m/s
so
lowest frequency will be =
..............1
put here value in equation 1
lowest frequency will be =
lowest frequency = 535.93 Hz
and
we have given highest frequency f = 4000Hz
so
wavelength =
..............2
put here value
wavelength =
wavelength = 0.08575 m
so distance =
..............3
distance =
distance = 0.0425 m
so distance between adjacent anti nodes is 4.25 cm
Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
The image formed by a plane mirror is virtual, upright and the same size with the actual object. The upright image of an object in a plane mirror is can be found on the other side of the mirror which is why it is also virtual.
Answer:
v = 4.76 m/s
Explanation:
Given,
The distance traveled by her bike, d = 10 miles
The time of her travel, t = 2.1 m/s
The velocity of an object is defined as the distance traveled by the object to the time of travel. Therefore,
V = d/t m/s
= 10 / 2.1
= 4.76 m/s
Hence, The velocity of her bike is, V = 4.76 m/s
Answer:
The property of the wave marked X is related to the source of the wave
Explanation:
The source of of origin of waves
Electromagnetic wave are waves that consists of varying electric and magnetic field that vibrate perpendicular to each other and to the direction of propagation of the wave and they are therefore transverse waves and transfer energy
Electromagnetic waves originate from the vibration of charged particles that gives off varying electric and magnetic fields
Mechanical waves are defined as waves that require a material medium such as air, water, metal, plastic, stretched leather, or wood to propagate
Mechanical waves originate from vibration of the particles of a medium
Sound waves which is a form of longitudinal mechanical waves that propagates by the vibration of the particles of a given medium about a point parallel to the direction of propagation of the wave.