<u>Answer:</u> The correct answer is option B, C and E.
<u>Explanation:</u>
Centripetal acceleration is defined as the acceleration win which an object moves in a curved path. Formula for this acceleration is given by the equation:

where,
= centripetal acceleration
v = linear speed of the object
r = radius of the curved path
From the given options,
Option A: As, the golf ball is not moving in a curved path. Hence, it is not an example of centripetal acceleration.
Option B: As, a car is moving in a curved path. Hence, it is an example of centripetal acceleration.
Option C: As, a person is moving in a curved path. Hence, it is an example of centripetal acceleration.
Option D: As, a car is not moving in a curved path and is moving in a straight road. Hence, it is not an example of centripetal acceleration. The car is moving with zero acceleration because the direction of the car is not changing.
Option E: As, a bicyclist is moving in a curved path which is around the lake. Hence, it is an example of centripetal acceleration.
Yes. You must ask for permission to use, modify and/or redistribute any picture posted by another person.
Answer:
0.0072 m³/s
Explanation:
Using Bernoulli's law
P₁ + 1/2ρv₁² = P₂ + 1/2ρv₂ since the pipe is horizontal
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
flow rate is constant
A₁v₁ = A₂v₂
A₁ = πr₁² = π (0.06/2)² = 0.0028278 m²
A₂ = πr₂² = π (0.0225)² = 0.00159 m²
v₁ = (A₂ / A₁)v₂
v₁ = (0.00159 m²/ 0.0028278 m²) v₂ = 0.562 v₂
substitute v₁ into the Bernoulli's equation
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
500 ( 1 - 0.3161 ) v₂² = (31.0 - 24 ) × 10³ Pa
341.924 v₂² = 7000
v₂² = 20.472
v₂ = √ 20.472 = 4.525 m/s
volume follow rate = 0.00159 m² × 4.525 m/s = 0.0072 m³/s
Momentum should be conserved. The momentum of both
objects must balance with their initial and final momentum.
Let m1 and v1 be the mass and velocity of the
bowling ball
And m2 and v2 be the mass and velocity of the
bowling pin
(m1v1)i + (m2v2)i = (m1v1)f + (m2v2)f
30 kg m/s + (1.5 kg)(0 m/s) = 13kg m/s + 1.5v2f
V2f = 11.33 m/s
<span>So the momentum = 1.5 kg(11.33 m/s) = 17 kg m/s</span>
Halogens therefore react most vigorously with Group 1 and Group 2 metals of all main group elements.