Answer:
93 km/h
Explanation:
Given that a bus took 8 hours to travel 639 km. For the first 5 hours, it travelled at an average speed of 72 km/h
Let the first 5 hours journey distance = F
From the formula of speed,
Speed = distance/time
Substitute speed and time
72 = F/5
F = 72 × 5 = 360 km
The remaining distance will be:
639 - 360 = 279km
The remaining time will be:
8 - 5 = 3 hours
Speed = 279/3
Speed = 93 km/h
Therefore, the average speed for the remaining time of the journey is equal to 93 km/h
Answer:
Final velocity v=19.83 m/sec
Explanation:
We have given initial velocity u =5.13 m/sexc
Acceleration of automobile 
Time t =4.9 sec
We have to find the final velocity v
According to first law of motion v = u+at ,here v is the final velocity , a is acceleration and t is time
So 
So the final velocity is 19.83 m/sec
Answer:
θ = 28.9
Explanation:
For this exercise let's use the law of refraction
n₁ sin θ₁ = n₂ sin θ₂
where we use index 1 for air and index 2 for water where the fish is
sin θ₂ = n₁ / n₂ sin θ₁
in this case the air repair index is 1 and the water 1.33
we substitute
sin θ₂ = 1 / 1.33 sin t 40
sin θ = 0.4833
θ = sin⁻¹ 0.4833
θ = 28.9
Explanation:
potential energy= mgh
30 × 10 × 30 = 9000J or 9KJ
Answer:
The temperature reported by a thermometer is never precisely the same as its surroundings
Explanation:
In this experiment to determine the specific heat of a material the theory explains that when a heat interchange takes place between two bodies that were having different temperatures at the start, the quantity of heat the warmer body looses is equal to that gained by the cooler body to reach the equilibrium temperature. <u>This is true only if no heat is lost or gained from the surrounding.</u> If heat is gained or lost from the surrounding environment, the temperature readings by the thermometer will be incorrect. The experimenter should therefore keep in mind that for accurate results, the temperature recorded by the thermometer is similar to that of the surrounding at the start of the experiment and if it differs then note that there is either heat gained or lost to the environment.