Answer:
Given speed of light in diamond =1.24*10m/s
speed of light (c) =3*10^8m/s
refractive index of diamond =3*10^8/1.24*10=2.41*10^7m/s
To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
The stress that can cause on the anticline , is the Compression