Based on the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- The location will correspond to any point on the same latitude as A
<h3>What are lines of longitude?</h3>
Lines of longitude are imaginary lines which run along the earth from the North pole. to the South pole.
Longitude lines divide the earth into semi-circles.
Longitude lines are known as meridians and each meridian measures one arc degree of longitude.
Considering the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- the location will correspond to any point on the same latitude as A
In conclusion, longitude lines are imaginary lines and run from North to South on the earth.
Learn more about lines of longitude at: brainly.com/question/1939015
#SPJ1
Responder:
<h3>
150 Nm
</h3><h3>
Energía potencial
</h3>
Explicación:
El tipo de energía que posee el objeto se conoce como energía potencial. <u>La energía potencial es la energía que posee un objeto, mi virtud de su posición.
</u>
Energía potencial = masa * aceleración debido a la gravedad * altura
Dado que Force = masa * aceleración debido a la gravedad
Energía potencial = Fuerza * altura
Fuerza dada = 50N y altura = 3 m
Energía potencial = 50 * 3
Energía potencial = 150 Nm
Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.
Uhhhhhhhhh just tryna get a point so I can ask a question so eh I’m using ur question heheheheheh
Answer:
<em>The force required is 3,104 N</em>
Explanation:
<u>Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = ma
Where a is the acceleration of the object.
On the other hand, the equations of the Kinematics describe the motion of the object by the equation:

Where:
vf is the final speed
vo is the initial speed
a is the acceleration
t is the time
Solving for a:

We are given the initial speed as vo=20.4 m/s, the final speed as vf=0 (at rest), and the time taken to stop the car as t=7.4 s. The acceleration is:


The acceleration is negative because the car is braking (losing speed). Now compute the force exerted on the car of mass m=1,126 kg:

F= 3,104 N
The force required is 3,104 N