Answer: find the attached files for the answer
Explanation:
The reflected ray appears to have originated from the focal point. We should actually draw a vector from the focal point through the point where the incident ray hits the mirror but we shorten the vector so that its starting point is on the mirror, without changing its angle.
Please find the attached files for the solution
Higher frequency,higher energy,shorter wavelength
Answer:
Motion
Explanation:
because when something moves its call motion
<span>Given:
3,500 kilometers
Find:</span>
Years for two continents to collide = ?
<span>Solution:
We know that </span>typical motions of one plate relative to another
are 1 centimeter per year.
So first, we convert 3,500 km to cm.<span>
</span><span>
</span>
The solution would be like this for this specific problem:
1 km = 100,000 cm
3,500 km x 100,000 = 350,000,000 cm
Since we know that 1 cm = 1 year, then that means
350,000,000 cm is equivalent to 350,000,000 years.
Therefore, it would take 350 million years for two continents
that are 3500 kilometers apart to collide.
<span>
To add, </span>a phenomenon of the plate tectonics of Earth that occurs at
convergent boundaries is called the continental collision.
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:

- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:

- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.