Because the direction of the kicks are opposite, the net force between the applied forces is their difference.
Fn = F₂ - F₁
Substituting,
Fn = 15 N - 5 N
Fn = 10 N
From Newton's second law of motion,
Fn = m x a
where m is mass and a is acceleration. Manipulating the equation so that we are able to calculate for a,
a = Fn / m
Substituting,
a = (10 N) / 2 kg
a = 5 m/s²
<em>ANSWER: 5 m/s²</em>
Because it just it dndbsnsnsbsnsnsnsnsnsnsnsnsn
Answer:
The answer is below
Explanation:
Centripetal acceleration is the acceleration due to the movement of an object in a uniform circular motion. The acceleration is directed towards the center of the circle.
Centripetal acceleration is given by the formula:
a = v² / r; where v is the speed of the object and r is the radius of curvature (distance from object ot the center of circle).
Let us assume the car has a velocity of v m/s. For the curve with radius of curvature r:
a₁ = v² / r
For the curve with radius of curvature r = 2r:
a₂ = v² / 2r = (1/2)a₁
Therefore the centripetal acceleration is greater in the curve with radius pf curvature r and smaller in the curve with twice the radius of curvature of the other.
Answer: 100 N
Explanation:
F = ma = 0.5(200) = 100 N
Answer:
P1 = 0 gage
P2 = 87.9 lb/ft³
Explanation:
Given data
Airplane flying = 200 mph = 293.33 ft/s
altitude height = 5000-ft
air velocity relative to the airplane = 273 mph = 400.4 ft/s
Solution
we know density at height 5000-ft is 2.04 ×
slug/ft³
so here P1 +
= P2 +
and here
P1 = 0 gage
because P1 = atmospheric pressure
and so here put here value and we get
P1 +
= P2 +
0 +
solve it we get
P2 = 87.9 lb/ft³