Explanation:
A reaction quotient is defined as the ratio of concentration of products over reactants raised to the power of their stoichiometric coefficients.
A reaction quotient is denoted by the symbol Q.
For example, 
The reaction quotient for this reaction is as follows.
Q = ![\frac{[Fe^{2+}]^{2}[Zn^{2+}]}{[Fe^{3+}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BFe%5E%7B2%2B%7D%5D%5E%7B2%7D%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5E%7B2%7D%7D)
[Zn] will be equal to 1 as it is present in solid state. Therefore, we don't need to write it in the reaction quotient expression.
Answer:
Molecules move from areas of high concentration to areas of low concentration.
Explanation:
It is given that vapor pressure of pure water at 296 K is 2778.5 Pa.These vapors will result in the formation of an ideal gas.
Now, as water is covered with oil and contains only 1% molecules of water. Hence, the vapor pressure of this mixture will also be equal to the vapor pressure of pure water.
So, vapor pressure of mixture = 1% vapor pressure of pure water
Therefore,
=
= 27.785 Pa
Thus, we can conclude that the equilibrium vapor pressure of water above the oil layer is 27.785 Pa.
This is because, only <span> weak van der Waals forces or weak London dispersion forces are present between the atoms of the </span><span>noble gases.
Hope this helps!</span>