Explanation :
As we know that the Gibbs free energy is not only function of temperature and pressure but also amount of each substance in the system.

where,
is the amount of component 1 and 2 in the system.
Partial molar Gibbs free energy : The partial derivative of Gibbs free energy with respect to amount of component (i) of a mixture when other variable
are kept constant are known as partial molar Gibbs free energy of
component.
For a substance in a mixture, the chemical potential
is defined as the partial molar Gibbs free energy.
The expression will be:

where,
T = temperature
P = pressure
is the amount of component 'i' and 'j' in the system.
Answer:
Solid is ur answer
Explanation:
Stay safe, stay healthy and blessed.
Have a great day !
Thank you
Hey there!
Values Ka1 and Ka2 :
Ka1 => 8.0*10⁻⁵
Ka2 => 1.6*10⁻¹²
H2A + H2O -------> H3O⁺ + HA⁻
Ka2 is very less so I am not considering that dissociation.
Now Ka = 8.0*10⁻⁵ = [H3O⁺] [HA⁻] / [H2A]
lets concentration of H3O⁺ = X then above equation will be
8.0*10−5 = [x] [x] / [0.28 -x
8.0*10−5 = x² / [0.28 -x ]
x² + 8.0*10⁻⁵x - 2.24 * 10⁻⁵
solve the quardratic equation
X =0.004693 M
pH = -log[H⁺]
pH = - log [ 0.004693 ]
pH = 2.3285
Hope that helps!
Answer:
A.compound genuinely bozo L XL so
Answer:
A unit for measuring work is called the foot-pound