To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = 313.15 x 3.50 / 298.15
<span>V2 = 3.68 L</span>
Fusion power is the power generated by nuclear fusion processes. In fusion reactions, two light atomic nuclei fuse together to form a heavier nucleus. In doing so, they release a comparatively large amount of energy that arises from the binding energy, creating an increase in temperature of the reactants.
Answer:
0.175mol
Explanation:
Molarity of a solution can be calculated thus:
Molarity (M) = number of moles (n) / volume (V)
According to the information provided in this question, volume of NH4OH = 0.125L, molarity = 1.4M
Using; Molarity = n/V
1.4 = n/0.125
n = 0.175mol
Answer:
When the Zebra arrived they ate all the food so the Unionid mussels declined as they died from the lack of food. Causing the Zebra Zebra numbers to increase and Unionid numbers to decline.
Answer: The average valence electron energy (AVEE) of this element =
1014.2 KJ/ mol or 1.0142mJ/mol.
Explanation:
The average valence electron energy = (number of electrons in s subshell x Ionization energy of that subshell) + (number of electrons in p subshell x Ionization energy of that subshell) / total number of electrons in both subshells of the valence shells.
The 5A elements are non-metals like Nitrogen and Phosphorus with the metallic character increasing as you go down the group, So a new 5A element will have characteristics of its group with 5 valence electron in its outermost shell represented as ns2 np3
Therefore the average valence electron energy (AVEE) of this element will be calculated as
The average valence electron energy = (2 x 1370 kJ/mol + 3 x 777 kJ/mol.) / 5
2740+2331/ 5 =5071/5
=1014.2 KJ/ mol or 1.0142mJ/mol.