Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.
Answer:
O The particles of the medium move more slowly and there are fewer chances to transfer energy.
Explanation:
Various media are made up of particles. These particles are in constant motion according to the kinetic theory of matter. Recall that temperature has been defined as the average kinetic energy of the particles in a medium. Hence, for any given medium, the velocity of particle motion increases or decreases linearly with temperature.
The speed of particles in any medium increases or decreases as the temperature of the medium increases or decreases as emphasised above. Hence, at low temperature, the velocity of waves set up by the motion of particles in a medium decreases and transfer the wave energy to neighbouring particles occurs more slowly than at high temperatures.
Answer:
b) -10 m/s
Explanation:
In perfectly elastic head on collisions of identical masses, the velocities are exchanged with one another.
Answer:
a = 3,0 m/s²
Explanation:
En este ejercicio se pide calcular la aceleracion del cuerpo, usemos las ecuaciones de cinematica en una dimensión.
v= v₀ + a t
como el corredor parte del reposo si velocidad inicial es cero
v = at
a = v/t
calculemos
a = 12 /4,0
a = 3,0 m/s²
In scientific terms, ultrasound is a sound pressure, cyclic in nature, that has a greater frequency than the limit at the top of human hearing capabilities. What this means is that an ultrasonic sound can’t be heard by the human ear because their frequency is too high for our ears to pick up. In healthy young adults, this upper hearing capability is an average of 20 kilohertz. Ultrasound has many applications in several fields. Perhaps the best known application for ultrasound is sonography. This is where medical staff use the high pitched noise to produce a picture of a fetus while in the mother’s womb. Another use however, doesn’t directly concern humans at all. Bats use the high pitched noises to see in the dark and get an accurate reading on their preys internal structure. A popular belief is that an ultrasonic sound has the ability to turn the locking mechanism in a door lock, as demonstrated on some spy movies. On the opposite side of this are infrasonic sounds. These are noises with a frequency less than the lowest level of human hearing capabilities is 20 hertz. It is possible for humans to perceive infrasonic sounds, but only if the air pressure is sufficient. Although the war is the main tool for hearing these low sounds, it is possible for other parts of the body to “feel them”. Infrasound can be used to send signals in the army to special machines that can pick them up. These can be used to transmit vital data. Animals are able to pick up some low infrasonic noises which warn them of natural disasters before they happen, generally earthquakes and tsunamis.
I hope some of this information I gave you can help you. I came up with everything myself to help you.