Answer:
The inducerd emf is 1.08 V
Solution:
As per the question:
Altitude of the satellite, H = 400 km
Length of the antenna, l = 1.76 m
Magnetic field, B = 
Now,
When a conducting rod moves in a uniform magnetic field linearly with velocity, v, then the potential difference due to its motion is given by:

Here, velocity v is perpendicular to the rod
Thus
e = lvB (1)
For the orbital velocity of the satellite at an altitude, H:

where
G = Gravitational constant
= mass of earth
= radius of earth

Using this value value in eqn (1):

They are formed from erosion and weathering.
The time it takes an object to complete one oscillation and return to its initial position is measured in terms of a period, or T. The formula for the angular frequency is = 2/T.
<h3>How is G determined in oscillation?</h3>
Use a stopwatch to calculate the oscillation's time period T. Calculate the pendulum's length L. Subtract the time period T's square from the length L.
<h3>How does oscillation's G work?</h3>
A mass attached to the end of a pendulum with a length of l causes it to oscillate with a period (T). T = 2(l/g), where g.
To know more about angular frequency visit:-
brainly.com/question/29107224
#SPJ4