Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
Answer:
yes, albert is better grffffrr#fffffrttt.
Explanation:
Answer:
if electrons are shared unequally between bonded atoms
Explanation:
A polar covalent bond is a bond that is formed due to the unequal distribution of electrons between two partially charged atoms. This is observed when the difference in electronegativity between the bond atoms is between 0.5 and 1.7.
A polar bond is a covalent bond between two atoms where the electrons that form the bond are unevenly distributed. This causes the molecule to have a slight electric dipole moment where one end is slightly positive and the other is slightly negative.
The charge of the electric dipoles is less than a full unit charge, so they are considered partial charges and are called delta plus (δ +) and delta minus (δ-).
Because positive and negative charges are separated at the bond, molecules with polar covalent bonds interact with the dipoles of other molecules. This produces intermolecular dipole-dipole forces between the molecules.
Answer: The order with respect to
is 1.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

k= rate constant
x = order with respect to 
y = order with respect to A
n = x+y = Total order
From trial 1:
(1)
From trial 2:
(2)
Dividing 2 by 1 :
therefore x= 1
Thus order with respect to
is 1.