A food chain is a sequence going from the producers on the bottom to the consumers to the top that shows what consumer eats what
Answer:
Yes
Explanation:
Denatured ethanol fuel is a polar solvent, which is soluble in water. A
Polar solvent is a compound with a charge separation in chemical bonds, such as alcohol, most acids, or ammonia. These have affinity with water and will dissolve easily. Denatured fuel ethanol has a flash point of -5 ° F and a vapor density of 1.5, indicating that it is heavier than air.
Consequently, ethanol vapors do not rise, similar to the gasoline vapors they are looking for lower altitudes. The specific gravity of denatured fuel ethanol is 0.79, which indicates that it is lighter than water and has a self-ignition temperature of 709 ° F and a boiling point of 165-175 ° F. Like gasoline, the most denatured fuel, the greatest danger of ethanol as an engine fuel component is its flammability.
It has a wider flammable range than gasoline (LEL is 3% and UEL is 19%).
Answer:
- Addition of Ba(OH)2: favors the formation of a precipitate.
- Undergo a chemical reaction forming soluble species.
- Addition of CuSO4 : favors the formation of a precipitate.
Explanation:
Hello,
In this case, since the dissociation reaction of barium sulfate is:

We must analyze the effect of the common ion:
- By adding barium hydroxide, more barium ions will be added to the equilibrium system so the formation of solid barium sulfate will be favored (reaction shifts leftwards towards reactants).
- By adding sodium nitrate, the following reaction will undergo:

So the precipitate will turn into other soluble species.
- By adding copper (II) sulfate, more sulfate ions will be added to the equilibrium system so the formation of solid barium sulfate will be favored (reaction shifts leftwards towards reactants).
All of this is supported by the Le Chatelier's principle.
Best regards.
Answer:
a. +2
b. +3
c. -1
Explanation:
The typical oxidation states can be determined from the periodic table based on the number of valence electrons an atom has.
a. Calcium belongs to group 2A, meaning it has 2 valence electrons and, therefore, would have an oxidation state of +2 in compounds.
b. Aluminum is in group 3A, meaning it has 3 valence electrons and would have an oxidation state of +3 in compounds when the 3 electrons are lost.
c. Fluorine would become fluorine if it gained 1 additional electron to achieve an octet, so its oxidation state would be -1.