Answer:
186.9Kelvin
Explanation:
The ideal gas law equation is PV
=
n
R
T
where
P is the pressure of the gas
V is the volume it occupies
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821
atm L
/mol K
T is the absolute temperature of the gas
Ensure units of the volume, pressure, and temperature of the gas correspond to R
( the universal gas constant, equal to 0.0821
atm L
/mol K
)
n
=
3.54moles
P= 1.57
V= 34.6
T=?
PV
=
n
R
T
PV/nR = T
1.57 x 34.6/3.54 x 0.0821
54.322/0.290634= 186.908620464= T
186.9Kelvin ( approximately to 1 decimal place)
Answer:
An ecosystem is a community of species.
Explanation:
i hope this helps i tried^^
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
Major Plates
Africa Plate
Antarctic Plate
Indo-Australian Plate
Australian Plate
Eurasian Plate
North American Plate
South American Plate
<span>Pacific Plate
Minor Plates
There are dozens of smaller plates, the seven largest of which are:
</span>Arabian Plate
Caribbean Plate
Juan de Fuca Plate
Cocos Plate
Nazca Plate
Philippine Sea Plate
<span>Scotia Plate</span>
There are chief differences between organic and inorganic compounds. ... The main difference is in the presence of a carbon atom; organic compounds will contain a carbon atom (and often a hydrogen atom, to form hydrocarbons), while almost all inorganic compounds do not contain either of those two atoms.