Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
Answer: Where are the answers?
Explanation:
The number that represents the coefficient on the product side of the chemical reaction,
is 7.
<h3>Coefficients of chemical equations</h3>
In equations representing chemical reactions, the coefficient of each reactant or product of a reaction is the number that comes on the left-hand side just before the chemical formula.
The coefficient of each species in a chemical reaction is obtainable when the equation of the reaction is balanced.
For example, in the following equation: 2A + B = 3C + D
The coefficients of A, B, C, and D are 2, 1, 3, and 1 respectively.
Applying this to the product side of a chemical reaction;
It means that the coefficient of the product is 7.
More on coefficients of chemical equations can be found here: brainly.com/question/28294176
#SPJ1
36.49 gm using law of equivalent proportion
Answer:
Na + CaSO4 = Na2SO4 + Ca
Explanation:
single displacement (substitution)