Answer: Magnesium
Explanation:
Galvanic cell is a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy.
The standard reduction potential for magnesium and zinc are as follows:
![E^0_{[Mg^{2+}/Mg]}= -2.37V](https://tex.z-dn.net/?f=E%5E0_%7B%5BMg%5E%7B2%2B%7D%2FMg%5D%7D%3D%20-2.37V)
![E^0_{[Zn^{2+}/Zn]}=-0.76V](https://tex.z-dn.net/?f=E%5E0_%7B%5BZn%5E%7B2%2B%7D%2FZn%5D%7D%3D-0.76V)
Reduction takes place easily if the standard reduction potential is higher (positive) and oxidation takes place easily if the standard reduction potential is less (more negative).
Here Mg undergoes oxidation by loss of electrons, thus act as anode. Zinc undergoes reduction by gain of electrons and thus act as cathode.


Thus magnesium gets oxidized.
Answer:
density of a piece of metal = 7 gr/ml
Explanation:
See the file please
Answer:
copper(I) bromide: CuBr
copper(I) oxide: Cu₂O
copper(II) bromide: CuBr₂
copper(II) oxide: CuO
iron(III) bromide: FeBr₃
iron(III) oxide: Fe₂O₃
lead(IV) bromide: PbBr₄
lead(IV) oxide: PbO₂
I hope this helped you! Brainliest would be greatly appreciated.
The combustion of an organic compound is mostly written as,
CaHbOc + O2 --> CO2 + H2O
where a, b, and c are supposed to be the subscripts of the elements C, H, and O in the compound. Determining the number of moles of C and H in the product which is the same as that in the compound,
(Carbon, C) : (561 mg) x (12/44) = 153 mg x (1 mmole/12 mg) = 12.75
(Hydrogen, H) : (306 mg) x (2/18) = 34 mg x (1 mmole/1 mg) = 34
Calculating for amount of O in the sample,
(oxygen, O) = 255 - 153 mg - 34 mg = 68 mg x (1mmole/16 mg) = 4.25
The empirical formula is therefore,
C(51/4)H34O17/4
C3H8O1
The molar mass of the empirical formula is 60. Therefore, the molecular formula of the compound is,
C9H24O3
All of these are compounds except oxygen because a compound is two or more different elements bonded together.