Acid palmitic acid has higher melting point, because it has two more methylene groups.

Acid palmitic acid has higher melting point, because it has two more methylene groups.
Giving it a greater surface area and therefore more intermolecular van der waals interact than the myristic acid.
stearic arid 
linoleic acid
(two double bond)
Stearic acid has higher Melting point, because it does not have any Carbon-Carbon double bonds, whereas linoleic acid has two cis double bonds which prevent the molecules from packing closely together.
Oleic Acid and Linoleic acid.
-one double bond (cis)
Acid palmitic acid has higher melting point, because it has two more methylene groups.
For more such question on methylene group.
brainly.com/question/4279223
#SPJ4
The relationship of radiation with distance obeys the inverse square law. Therefore, doubling the distance decrease the radiation by a factor of 4. The new count is 250.
1) Applying the same principle, the count decreases by a factor of 100. The new count is 10
2) An alpha particle is 4He2 and the Hydrogen can be represented as 1H1
14N7 + 4He2 - 1H1
= 17X8
Proton number 8 belongs to Oxygen. Therefore, the resultant nucleus is:
17O8
3) 185Au79 - 4He2
= 181Ir77
4) X - 4He2 = 234Th90
X = 238U92
5) Beta emission results in the same nucleon number but an increase in the proton number; therefore, the result is:
234Pa91
I believe that the answer is A i could be wrong though.
According to Bohr's model of the atom, the higher the orbital in which the electrons are found, the higher their energy or excitation state. Therefore, the electrons with the least amount of energy are those at the lowest orbitals, which are closer to the nucleus.
These orbitals are characterized by 4 quantum numbers, namely the principal quantum number (n), orbital angular momentum quantum number (l), the magnetic quantum number (ml), and the electron spin quantum number (ms). The principal quantum number reflects the distance of the electrons from the nucleus with n=1 as the orbital closest to the nucleus. Thus, according to Bohr's model, electrons in the orbital with n=1 have the lowest energy.
Liquids are the easiest state of matter to compress.