Answer : The formula of the gas produced is,
(phosphine gas)
Explanation :
According to the question, when sodium phosphide is treated with water then it react to give phosphine gas and sodium hydroxide.
The balanced chemical reaction will be:

By Stoichiometry of the reaction we can say that:
1 mole of sodium phosphide reacts with 3 moles of water to give 1 mole of phosphine gas and 3 moles of sodium hydroxide.
Thus, the formula of the gas produced is,
(phosphine gas)
Answer: Try mass that’s the best guess I can give off the top of my head
Explanation: An atom is the smallest unit of matter that retains all of the chemical properties of an element. Atoms come together which forms molecules. These molecules interact to form solids, gases, or liquids.
<span>As the pressure is increased the solubility of the sugar and carbon dioxide is increased. The pressure of combination leaves little to no separation. There would be no discernable difference between the ingredients used to make the saturated solution.</span>
By Gay Lussacs law you can find the pressure. First both temperatures of Celsius must change to Kelvin by adding 273. Temperature one will be 308K and temperature 2 will be 258K
With this info, you can now find the pressure with Lussacs law
P1 = P2
— —
T1 T2
Pressure 1 is given which is 32 psi so just plug it all in and find P2
32 = x
—— ——
308 258
308x = 8256 (Cross multiply)
X = 26.8 (divide both sides by 308)
Answer is 26.8 PSI
This makes sense because as temperature increases pressure increases, as well as when temperature decreases, pressure decreases. Since it’s a colder day the pressure will be lower.
Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>