Since Lutetium-177 is a beta and gamma emitter, the daughter nuclide produced from the decay of this radioisotope is 177Hf.
Beta emission of a radioisotope yields a daughter nuclide whose amass number is the same as that of its parent nucleus but its atomic number is greater is greater than that of the parent nucleus by 1 unit.
Also, gamma emission does not lead to any change in the mass number of atomic number of the daughter nucleus produced.
Hence, the stable daughter nuclide, 177Hf is produced.
Learn more: brainly.com/question/1770619
.5 mols
Assuming that your 2.0 m is an M for molarity
I used the formula M=number of mold/L
Converted 250mL to .250L by dividing by 1000
Answer:
Explanation:
What occurred then is as a result of nuclear fission. This occurs as the Uranium-235 split into two smaller nuclei while releasing high energy neutrons. These neutrons bombard existing U-235 in the atmosphere and this reaction continue in a spontaneous manner until a chain reaction is formed of U-235, whose fall out fills the environment. This process was what led to people been exposed to high intensity radiation in the days and months after the atomic bomb was dropped.
Answer:
See Explanation
Explanation:
Ionization energy refers to the energy required to remove an electron from an atom. Metals have lower ionization energy than non metals since ionization energy increases across a period.
One thing that we must have in mind is that it takes much more energy to remove an electron from an inner filled shell than it takes to remove an electron from an outermost incompletely filled shell.
Now let us consider the case of magnesium which has two outermost electrons. Between IE2 and IE3 we have now moved to an inner filled shell(IE3 refers to removal of electrons from the inner second shell) and a lot of energy is required to remove an electron from this inner filled shell, hence the jump.
For aluminium having three outermost electrons, there is a jump between IE3 and IE4 because IE4 deals with electron removal from a second inner filled shell and a lot of energy is involved in the process hence the jump.
Hence a jump occurs each time electrons are removed from an inner filled shell.