There are two forces acting on the teacher:
Force due to weight/gravity (Fg)
Force due to drag (Fd), which is a resistance opposite to the direction of motion. Think of an airplane flying through the sky: there will be air that tries to oppose the plane's direction of motion AKA air-resistance.
The force of gravity is always downward (the direction of gravity).
Like we said before, the force of drag is always opposite to the direction of motion. Since the teacher is falling down, the force of drag is exerted upward.
Look at the attached diagram. The teacher is the circle in the middle. The two arrows indicate the two forces and their directions.
Now let's look at numbers:
Fg = mg = 65kg * 9.81 m/s^2 = ??N
Fd = 320N
To find the "Net Force" we must add up all of the forces exerted on the teacher, BUT we have to take into account the direction of forces.
Let's define downward as our "positive" direction. Since downward is positive, that means our force due to gravity is positive = +Fg
But since our force due to drag is UPWARD that means our force is NEGATIVE = -Fd.
So our total net force is

Answer:
Each layer has its own properties, composition, and characteristics that affects many of the key processes of our planet. They are, in order from the exterior to the interior – the crust, the mantle, the outer core, and the inner core.
Explanation:
Answer:
The maximum speed that the truck can have and still be stopped by the 100m road is the speed that it can go and be stopped at exactly 100m. Since there is no friction, this problem is similar to a projectile problem. You can think of the problem as being a ball tossed into the air except here you know the highest point and you are looking for the initial velocity needed to reach that point. Also, in this problem, because there is an incline, the value of the acceleration due to gravity is not simply g; it is the component of gravity acting parallel to the incline. Since we are working parallel to the plane, also keep in mind that the highest point is given in the problem as 100m. Solving for the initial velocity needed to have the truck stop after 100m, you should find that the maximum velocity the truck can have and be stopped by the road is 18.5 m/s.
Explanation:
Yes, they look exactly like newborn babies
<span>1200 meters is less than 1 kilometer
</span>is false