1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ronch [10]
3 years ago
11

On a trip to the Colorado Rockies, you notice that when the freeway goes steeply down a hill, there are emergency exits every fe

w miles. These emergency exits are straight ramps which leave the freeway and are sloped uphill. They are designed to stop runaway trucks and cars that lose their brakes on downhill stretches of the freeway even if the road is covered with ice. You are curious, so you stop at the next emergency exit to take some measurements. You determine that the exit rises at an angle of 10o from the horizontal and is 100m long. What is the maximum speed of a truck that you are sure will be stopped by this road, even if the frictional force of the road surface is negligible?
Physics
1 answer:
Zanzabum3 years ago
4 0

Answer:

The maximum speed that the truck can have and still be stopped by the 100m road is the speed that it can go and be stopped at exactly 100m. Since there is no friction, this problem is similar to a projectile problem. You can think of the problem as being a ball tossed into the air except here you know the highest point and you are looking for the initial velocity needed to reach that point. Also, in this problem, because there is an incline, the value of the acceleration due to gravity is not simply g; it is the component of gravity acting parallel to the incline. Since we are working parallel to the plane, also keep in mind that the highest point is given in the problem as 100m. Solving for the initial velocity needed to have the truck stop after 100m, you should find that the maximum velocity the truck can have and be stopped by the road is 18.5 m/s.

Explanation:

You might be interested in
To calculate the change in kinetic energy, you must know the force as a function of _______. The work done by the force causes t
QveST [7]

Answer:

(c) position

Explanation:

From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.

But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e

W = F x d

This distance is a measure of the position of the body at a given instance.

Therefore, the work done is given by the force as a function of distance (or position).

3 0
3 years ago
A bungee jumper starts with 1000 J in their GPE store. After they jump they fall and are brought to a stop with the bungee cord.
pochemuha

Answer:

energy is equal to 1000 J

Explanation:

When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J

This is a case of energy transformation, but the total value of mechanical energy does not change

         

8 0
2 years ago
wo lacrosse players collide in midair. Jeremy has a mass of 120 kg and is moving at a speed of 3 m/s. Hans has a mass of 140 kg
Julli [10]

2.71 m/s fast Hans is moving after the collision.

<u>Explanation</u>:

Given that,

Mass of Jeremy is 120 kg (M_J)

Speed of Jeremy is 3 m/s (V_J)

Speed of Jeremy after collision is (V_{JA}) -2.5 m/s

Mass of Hans is 140 kg (M_H)

Speed of Hans is -2 m/s (V_H)

Speed of Hans after collision is (V_{HA})

Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is  

= =\mathrm{M}_{1} \times \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{H}}

Substitute the given values,

= 120 × 3 + 140 × (-2)

= 360 + (-280)

= 80 kg m/s

Linear momentum after the collision of Jeremy and Hans is  

= =\mathrm{M}_{\mathrm{J}} \times \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{HA}}

= 120 × (-2.5) + 140 × V_{HA}

= -300 + 140 × V_{HA}

We know that conservation of liner momentum,

Linear momentum before the collision = Linear momentum after the collision

80 = -300 + 140 × V_{HA}

80 + 300 = 140 × V_{HA}

380 = 140 × V_{HA}

380/140= V_{HA}

V_{HA} = 2.71 m/s

2.71 m/s fast Hans is moving after the collision.

4 0
2 years ago
How can I convert this?<br>Please answer with solution. Thank you.​
fomenos

Answer:

1 hr 45 min

Explanation:

8 0
2 years ago
If a car travels 216 kilometers in 4 hours, calculate its speed.
Mariana [72]

Answer:

15 m/s

Explanation:

Speed(m/s) = distance(m)/time(s)

distance = 216 km = 216,000 m

time = 4 hours = 14,400 s

speed = 216000/14400 = 15 m/s

6 0
1 year ago
Read 2 more answers
Other questions:
  • Consider a car travelling at 60 km/hr. If the radius of a tire is 25 cm, calculate the angular speed of a point on the outer edg
    14·1 answer
  • 1. Astronomers measure the angle that the star appears to jump when viewing it from two different points in Earth's orbit. What
    8·2 answers
  • An object initially at rest experiences an acceleration of 1.90 ­m/s² for 6.60 s then travels at that constant velocity for anot
    8·1 answer
  • Please help. Brainliest will be given! 25 points. Show all work.
    5·1 answer
  • A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 4.00s during which she covers 34.0m. What was her
    11·1 answer
  • A risk-free, zero-coupon bond with a $5000 face value has ten years to maturity. The bond currently trades at $3650. What is the
    13·1 answer
  • A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A
    9·1 answer
  • You are watching an archery tournament when you start wondering how fast an arrow is shot from the bow. Remembering your physics
    10·1 answer
  • (PLEASE HELP ASAP) Which chemical equation models the law of conservation of mass?
    5·2 answers
  • Determine the slope of end a of the cantilevered beam. E = 200 gpa and i = 65. 0(106) mm4
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!