CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Inertia is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object's mass.
To determine whether an element is paramagnetic or diamagnetic, you need to examine the electron configuration of the element. If it has unpaired electrons, then the substance is paramagnetic. If the electrons are paired, then it is diamagnetic.
Answer:
-573.67
Explanation:
whenever energy is released in a chemical reaction, we would then expect the delta H of the reaction to be negative because the reaction is an exothermic reaction.
now we have that 2.81 moles of fuel when it combusts would releases 1612kJ of energy
thus, 1 mole will release 1612/2.81 = -573.67kJ of heat
Therefore the delta H of the reaction = -573.67 kJ/mol
Either he’s busy, or he is just trying to ignore you.
Need more info tho