Answer:
92.9%
Explanation:
You have been given the actual yield of the reaction. First, you need to find the theoretical yield of the reaction. To do this, you need to (1) convert grams Fe₂O₃ to moles Fe₂O₃ (via molar mass from periodic table values), then (2) convert moles Fe₂O₃ to moles Fe (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe to grams Fe (via molar mass).
Once you have found the theoretical yield, you need to use the percent yield equation to calculate the final answer. This number should have 3 sig figs to match the given values.
<u>(Step 1)</u>
Molar Mass (Fe₂O₃): 2(55.845 g/mol) + 3(15.998 g/mol)
Molar Mass (Fe₂O₃): 159.684 g/mol
1 Fe₂O₃(s) + 3 CO(g) ---> 2 Fe(s) + 3 CO₂(g)
Molar Mass (Fe): 55.845 g/mol
50.0 g Fe₂O₃ 1 mole 2 moles Fe 55.845 g
-------------------- x ------------------ x --------------------- x ---------------- = 35.0 g Fe
159.684 g 1 mole Fe₂O₃ 1 mole
<u>(Step 2)</u>
Actual Yield
Percent Yield = --------------------------- x 100%
Theoretical Yield
32.5 g Fe
Percent Yield = ---------------------- x 100% = 92.9%
35.0 g Fe
Are there any choices for anwsers
Answer: Two effects may occur during high current flow: 1) the wire may become overheated to the point that surface oxidation or even evaporation may take place, 2) at the connection points at each end of the wire, especially if the terminations are of a different type of metal than the wire, some atoms may migrate into or out of the wire.
Answer:
<h3>The answer is 5.0 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 100 g
volume = 20 mL
So we have

We have the final answer as
<h3>5.0 g/mL</h3>
Hope this helps you