Explanation:
To balance the reactions given, we must understand that the principle to follow is the law of conservation of matter.
Based on this premise, the number of moles of species on the reactant and product side must be the same;
Li + Br₂ → LiBr
Put a,b and c as the coefficient of each species
aLi + bBr₂ → cLiBr
balancing Li;
a = c
balancing Br;
2b = c
let a = 1;
c = 1
b =
or a = 2, b = 1 , c = 2
2Li + Br₂ → 2LiBr
P + Cl₂ → PCl₃
Using the same method;
aP + bCl₂ → cPCl₃
balancing P;
a = c
balancing Cl;
2b = 3c
let a = 1;
c = 1
b =
or
a = 2, b = 3, c = 2
2P + 3Cl₂ → 2PCl₃
iii,
H₂ + SO₂ → H₂S + H₂O
use coefficients a,b,c and d;
aH₂ + bSO₂ → cH₂S + dH₂O
balancing H;
2a = 2c + 2d
balancing S;
b = c
balancing O
2b = d
let b = 1,
c = 1
d = 2
a = 3
3H₂ + SO₂ → H₂S + 2H₂O
Answer:
increasing the number of molecules that have sufficient kinetic energy to react.
Explanation:
An increase in temperature affects the reaction rate by increasing the number of molecules that have sufficient kinetic energy to react.
or we say; temperature increase, leads to an increase in the amount of collisions between molecules.
Different types of acid deposition are
sulphur dioxide
nitroges oxides
Answer:
1.37cm
Explanation:
It's less than 1.4cm but more than 1.3cm. It's also more than 1.35cm so I guess the best answer would be 1.37cm or round up to 1.4cm
Gay-Lussac's law gives the relationship between pressure and temperature of a gas.
it states that for a fixed amount of gas of constant volume pressure is directly proportional to temperature.
P/T = k
where P - pressure, T - temperature and k - constant

where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation.
temperature should be in the kelvin scale,
T1 = 22 °C + 273 = 295 K
substituting the values in the equation

T = 492 K
new temperature - 492 - 273 = 219 °C