Answer:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Explanation:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Answer:
2Mg + O₂ → 2MgO
Explanation:
Chemical equation:
Mg + O₂ → MgO
Balanced chemical equation:
2Mg + O₂ → 2MgO
The balanced equation s given above and it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Steps to balanced the equation:
Step 1:
Mg + O₂ → MgO
Mg = 1 Mg = 1
O = 2 O = 1
Step 2:
2Mg + O₂ → MgO
Mg = 2 Mg = 1
O = 2 O = 1
Step 3:
2Mg + O₂ → 2MgO
Mg = 2 Mg = 2
O = 2 O = 2
<span>This is a covalent bond, a bond in which atoms share electrons. Covalent bonding generally happens between nonmetals. Covalent bonding is the type of bond that holds together the atoms within a polyatomic ion. It takes two electrons to make a covalent bond, one from each bonding atom.
</span><span>Mark as brainlist if correct please and have a blessed day!
</span>
Answer:
Is better use the Benedict's test by the increase in the amount of the products if the enzyme is a reductase
Explanation:
The Benedict's test works by the reaction of the reducing sugars with the ion cupric of the reactive. If the enzyme is a reductase (degrades polysaccharides into bi o monosaccharides), it should cut the polysaccharide bond and the products would react with the Benedict's cupric ion
I hope you undestand me