Mass will remain unchanged, always. His weight, which is the gravitational force acting on that mass will be less in this case.
Hello!
A graph that shows how position is depending on time is known as a Position Time Graph.
This is a graph used in Physics to help us understand how motion (positive/negative velocity) changes over a period of time. Motion can be seen in two ways on this graph: constant velocity and changing velocity, otherwise known as acceleration.
Hopes this help you answer your question!
A = 4\pi r^2
A = 4\pi (2\mu m /2)^2 (10^{-6}m/1\mu m)^2 (1mm/10{-3})^2
A = 1.33*!0^{-5}MM^2
Answer:
The force of gravity exerts a downward force. The floor exerts an upward force. Since these two forces are of equal magnitude and in opposite directions, they balance each other.
A free-falling object is an object moving under the effect of gravitational forces alone
The correct option to select for the True or False question is False
The reason the above selected option is correct is as follows:
According to Newton's second law of motion, we have;
Force = Mass × Acceleration
The force of gravity is
Where;
m = The mass of the object
∴ The force acting on an object in free fall, = m × g
Therefore the acceleration of an object in free fall is the constant acceleration due to gravity, and it therefore, does not change with time
The correct option for the question, acceleration of a free-falling object in a frictionless environment increases as a function of time is <u>False</u>
<u></u>
Learn more about object in free fall here:
brainly.com/question/13712424
brainly.com/question/11698474