1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
2 years ago
15

3. A 64 lb weight stretches a spring 4 ft in equilibrium. The weight is initially displaced 6 inches above equilibrium and given

a downward velocity of 6 ft/sec. Find its displacement for t > 0 if the medium resists the motion with a force equal to 3 times the speed in ft/sec (that is, the damping constant c = 3). Note that there is no external force in this case.

Physics
1 answer:
Damm [24]2 years ago
6 0

Answer:

Explanation:

the solution is given in the attached pictures

You might be interested in
What is electromagnetic indiction​
lora16 [44]


Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction.
6 0
2 years ago
7. Un bloque de 700 N se encuentra sobre una viga uniforme de 200 N y 6 m de longitud. El bloque está a una distancia de 1 m del
GrogVix [38]

Answer:

 x =  0.176 m

Explanation:

For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.

Let's use trigonometry to decompose the tension

      sin 60 = T_{y} / T

      T_{y} = T sin 60

       cos 60 = Tₓ / T

      Tₓ = T cos 60

we apply the equation

       ∑ τ = 0

       -W L / 2 - w x + T_{y} L = 0

 

the length of the bar is L = 6m

           -Mg 6/2 - m g x + T sin 60 6 = 0

             x = (6 T sin 60 - 3 M g) / mg

let's calculate

let's use the maximum tension that resists the cable T = 900 N

             x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)

             x = (4676 - 5880) / 6860

             x = - 0.176 m

Therefore the block can be up to 0.176m to keep the system in balance.

5 0
3 years ago
Suppose the ring rotates once every 4.30 ss . If a rider's mass is 58.0 kgkg , with how much force does the ring push on her at
Stells [14]

Answer:

422.36 N

Explanation:

given,

time of rotation = 4.30 s

T = 4.30 s

Assuming the diameter of the ring equal to 16 m

radius, R = 8 m

v = \dfrac{2\pi R}{T}

v = \dfrac{2\pi\times 8}{4.30}

  v = 11.69 m/s

now, Force does the ring push on her at the top

- N - m g = \dfrac{-mv^2}{R}

N + m g = \dfrac{mv^2}{R}

N = \dfrac{mv^2}{R}- m g

N = m(\dfrac{v^2}{R}- g)

N = 58\times (\dfrac{11.69^2}{8}- 9.8)

N = 422.36 N

The force exerted by the ring to push her is equal to 422.36 N.

6 0
2 years ago
A man starts walking from home and walks 2 miles at 20° north of west, then 4 miles at 10° west of south, then 3 miles at 15° no
Rzqust [24]

Answer:

a)  R = 2.5 mi   b)  To return to your case you must walk in the opposite direction or θ = 98º

This is 8º north west

Explanation:

This is a distance exercise with vectors the best way to work these is to decompose the vectors and perform the sum on each axis separately

To use the Cartesian system all angles must be measured from the positive side of the x-axis or the signs of the components must be assigned manually depending on the quadrant where they are.

First vector A = 2 to 20º north west

Measured from the positive x axis is θ = 180 -20 = 160º

We use trigonometry to find the components

     Cos 20 = Aₓ / A

     sin 20 = A_{y} / A

    Aₓ = A cos 160 = 2 cos 160

    A_{y}  = A sin160 = 2 sin160

    Aₓ = -1,879 mi

    A_{y}  = 0.684 mi

Second vector B = 4 mi 10º west of the south

Angle θ = 270 - 10 = 260º

    cos 2600 = Bₓ / B

    sin 260 = B_{y} / B

    Bₓ = B cos 260

     B_{y}  = B sin 260

    Bₓ = 4 cos 260

     B_{y}  = 4 sin 260

     Bₓ = -0.6946mi

     B_{y}  = - 3,939 mi

Third vector C = 3 mi to 15 north east

     cos 15 = Cₓ / C

     sin15 = C_{y} / C

     Cₓ = C cos 15

     C_{y} = C sin15

     Cₓ = 3 cos 15

    C_{y} = 3 sin 15

     Cₓ = 2,898 mi

    C_{y} = 0.7765 mi

Now we can find the final position of the person

    X = Aₓ + Bₓ + Cₓ

    X = -1.879 -0.6949 + 2.898

    X = 0.3241 mi

    Y = A_{y} +  B_{y} + C_{y}

    Y = 0.684 - 3.939 +0.7765

    Y = -2.4785 mi

a) We use Pythagoras' theorem

     R = √ (x2 + y2)

     R = √ (0.3241 2 + (-2.4785) 2)

     R = 2.4996 mi

     R = 2.5 mi

b) let's use trigonometry

     Tan θ = y / x

     Tanθ  = -2.4785 / 0.3241

     θ = tan⁻¹ (-7,647)

     θ = -82

Measured from the positive side of the x axis is Te = 360 - 82 = 278º

(90-82) south east

To return to your case you must walk in the opposite direction or Te = 98º

This is 8º north west

3 0
3 years ago
Un vas plin cu lichid cântăreşte 175kg. Ceea ce reprezintă de 5 ori masa vasului gol. Ştiind că volumul interior al vasului este
Mariana [72]

a) Density of the liquid: 823.5kg/m^3

b) Weight of the liquid: 1372 N

Explanation:

Translation of the text:

<em>"A full tank with liquid weighs 175kg. Which is 5 times the mass of the empty vessel. Knowing that the inside volume of the vessel is 0.17kl, calculate: </em>

<em>a) the density of the liquid; </em>

<em>b) the weight of the liquid."</em>

a)

We know that the full tank with liquid has a total mass of M = 175 kg. We can write the total mass as

M=m_L + m_V (1)

where

m_L is the mass of the liquid

m_V is the mass of the vessel

We also know that the total mass M is 5 times the mass of the empty vessel, so we have:

M=5m_V\\m_V=\frac{M}{5}=\frac{175}{5}=35 kg

which is the mass of the empty vessel.

Therefore, we can find the mass of the liquid only using (1):

m_L=M-m_V=175-35=140 kg

The density of the liquid is given by

d=\frac{m}{V}

where

m = 140 kg (mass of the liquid)

V = 0.170 kL = 170 L = 0.170 m^3 (volume of the liquid, which is equal to the volume of the vessel)

So we get

d=\frac{140}{0.170}=823.5kg/m^3

b)

The weight of a body is given by

F=mg

where

m is its mass

g is the acceleration due to gravity

For the liquid in this problem, we have

m = 140 kg (mass)

g=9.8 m/s^2 (acceleration due to gravity)

Therefore, its weight is

F=(140)(9.8)=1372 N

Learn more about density:

brainly.com/question/5055270

brainly.com/question/8441651

#LearnwithBrainly

6 0
2 years ago
Other questions:
  • Which of the following statements are true for electric field lines? Check all that apply. Check all that apply. Electric field
    7·1 answer
  • Density
    7·2 answers
  • At a baseball game, the batter hit a fly ball at time t = 0 s. The outfielder caught the ball at t = 5.8 s. When was the ball at
    9·2 answers
  • If an object moves in uniform circular motion in a circle of radius R = 1.0 meter, and the object takes 4.0 seconds to complete
    6·2 answers
  • PLEAASE HELP KE WITH THESE THREE YOULL GET POINTS
    6·1 answer
  • A 1050 kg sports car is moving westbound at 13.0 m/s on a level road when it collides with a 6320 kg truck driving east on the s
    9·1 answer
  • 3. True or false: Evaporation is the change of state from a gas to a liquid. *
    12·2 answers
  • 3. When two liquids are mixed and a solid
    13·1 answer
  • What is The splitting of white light into its component colours is termed as?
    10·1 answer
  • Which statement correctly describes the relationship between the volume of a gas and its temperature, in Kelvin, assuming pressu
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!