Explanation:
003 (part 1 of 2)
Pressure is force divided by area.
P = F / A
P = (117 kg × 9.8 m/s²) / (2 × (0.05 m)²)
P = 229,320 Pa
003 (part 2 of 2)
There are approximately 6895 Pa in 1 psi.
P = 229,320 Pa × (1 psi / 6895 Pa)
P = 33.3 psi
004 (part 1 of 2)
Since the collisions are elastic, the angle of reflection is the same as the angle of incidence (it bounces off at the same angle).
Impulse = change in momentum
F Δt = m Δv
F (36 s) = (300 × 0.003 kg) (5.2 sin 57° m/s − (-5.2 sin 57° m/s))
F = 0.218 N
004 (part 2 of 2)
Pressure is force over area.
P = F / A
P = 0.218 N / 0.712 m²
P = 0.306 N/m²
Answer:
The pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
Explanation:
Given;
mass of the woman, m = 55 kg
diameter of the circular heel, d = 6.0 mm
radius of the heel, r = 3.0 mm = 0.003 m
Cross-sectional area of the heel is given by;
A = πr²
A = π(0.003)²
A = 2.8278 x 10⁻⁵ m²
The weight of the woman is given by;
W = mg
W = 55 x 9.8
W = 539 N
The pressure exerted by the woman on the floor is given by;
P = F / A
P = W / A
P = 539 / (2.8278 x 10⁻⁵ )
P = 1.9061 x 10⁷ N/m²
Therefore, the pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
Answer:This quest took a huge leap forward in 2000 when Hubble studied the exoplanet HD 209458 b, the first extrasolar planet known to make “transits” across the face of its star. Hubble became the first telescope to directly detect an exoplanet's atmosphere and survey its makeup.
Explanation:
Answer:
0.02 s
160 m/s
Explanation:
Given:
Δx = 1.6 m
v₀ = 0 m/s
a = 8000 m/s²
A) Find t.
Δx = v₀ t + ½ at²
1.6 m = (0 m/s) t + ½ (8000 m/s²) t²
t = 0.02 s
B) Find v.
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (8000 m/s²) (1.6 m)
v = 160 m/s
Answer:
A: Opposite
Explanation:
From Newton's third law of motion, to every action there is an equal an opposite reaction. Thus, when the wave hits a fixed boundary, it is returned as a reflected wave to the starting point albeit on the other side.