Answer:
3.98V
Explanation:
Given
Pontential difference V as 3v
Energy delivered is 30%,
Recall that Enery E=1/2cv^2 from this E=V^2(since Current C is not provided we can assume a value 2)
So E=V^2
E=3^2=9
At full charge E=9,30%of 9,0.3*9=2.7 energy in capacitor is 9-2.7=6.3
But E=V^2
✓E=V
✓6.3=3.98V
Answer:
The ball would hit the floor approximately
after leaving the table.
The ball would travel approximately
horizontally after leaving the table.
(Assumption:
.)
Explanation:
Let
denote the change to the height of the ball. Let
denote the time (in seconds) it took for the ball to hit the floor after leaving the table. Let
denote the initial vertical velocity of this ball.
If the air resistance on this ball is indeed negligible:
.
The ball was initially travelling horizontally. In other words, before leaving the table, the vertical velocity of the ball was
.
The height of the table was
. Therefore, after hitting the floor, the ball would be
below where it was before leaving the table. Hence,
.
The equation becomes:
.
Solve for
:
.
In other words, it would take approximately
for the ball to hit the floor after leaving the table.
Since the air resistance on the ball is negligible, the horizontal velocity of this ball would be constant (at
) until the ball hits the floor.
The ball was in the air for approximately
and would have travelled approximately
horizontally during the flight.
Answer:
Short answer, because copper wire does not have high resistance.
Explanation:
<h2>When Transferring Flammable Liquids - Option A</h2>
To create a pathway for the liquid to flow easily is a correct reason to physically connect objects with a bond wire when transferring flammable liquids. Physically connect the two conductive objects together with a bond wire to eliminate a difference in static charge potential among them. The bond wire is attached between the containers in the process of flammable filling liquid actions except for a metallic path is found.
Answer:
9.2 V
Explanation:
The RMS value of an AC is the effective value of a varying voltage or current in DC, that is the equivalent value of the AC which produces the same effect as an DC. For example if a motor is supplied by a 9V RMS voltage, it will rotate as if the voltage applied was 9V DC.
The RMS value is given by:
RMS voltage = Peak voltage * 1/√2
Given that the maximum voltage should not exceed 13 V, this means that the peak voltage is 13 V. The maximum RMS voltage is:
RMS voltage = Peak voltage * 1/√2 = 13 * 1/√2 = 9.2 V