1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
6

Underground water is being pumped into a pool whose cross section is 3 m x 4 m while water is discharged through a 0.076m-diamet

er orifice at a constant average velocity of 6.3 m/s. if the water level in the pool rises at a rate of 1.5 cm/min, determine the rate at which water is supplied to the pool, in m3/s.
Physics
1 answer:
Svetllana [295]3 years ago
6 0
Given:

Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min

Required:

Inlet flowrate

Solution:

The problem can be solved by this general formula.

Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice

First, we need to convert the units of the accumulation velocity into m/s to be consistent.

Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s

We then calculate the area of the pool and the area of the orifice by:

Area of pool = 3 × 4 m²
Area of pool = 12m²

Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²

Since we have all we need, we plug in the values to the general equation earlier

Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice

0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²

Transposing terms,

Inlet flowrate = 0.316 m³/s
You might be interested in
If a longitudinal wave passes a specific point seven times per second, and the distance between wave rarefaction points is 2 met
zavuch27 [327]

Answer: 14 m/s

Explanation:

The speed S of a sound wave is given by the following equation:

S=\lambda f

Where:

\lambda=2 m is the wavelength of the sound wave

f=7 times/s=7 Hz

S=(2 m)(7 Hz)

Hence:

S=14 m/s

4 0
3 years ago
(please help i gotta turn this in a few minutes 10 points!)
pogonyaev

Answer:

3a, 2b,4c,1d

Explanation:

what do I need to explain just something you know

7 0
3 years ago
You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.
Neporo4naja [7]

Answer:

The distance is r_2  =  0.24 \  m

Explanation:

From the question we are told that

       The  distance from the conversation is r_1    =  24.0 \ m

       The  intensity of  the sound at your position is  \beta _1 =  40 dB

        The  intensity at the sound at the new position is  \beta_2 =  80.0dB

Generally the intensity in  decibel is  is mathematically represented as

      \beta  =  10dB log_{10}[\frac{d}{d_o} ]

The intensity is  also mathematically represented as

      d =  \frac{P}{A}

So

    \beta  =  10dB *  log_{10}[\frac{P}{A* d_o} ]

=>   \frac{\beta}{10}  =  log_{10} [\frac{P}{A (l_o)} ]

From the logarithm definition

=>    \frac{P}{A  *  d_o}  =  10^{\frac{\beta}{10} }

=>      P =  A (d_o ) [10^{\frac{\beta }{ 10} } ]

Here P is the power of the sound wave

 and  A is the cross-sectional area of the sound wave  which is generally in spherical form

Now the power of the sound wave at the first position is mathematically represented as

               P_1 =  A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]

Now the power of the sound wave at the second  position is mathematically represented as

               P_2 =  A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]

Generally  power of the wave is constant at both positions  so  

    A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]  = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]

      4 \pi r_1 ^2   [10^{\frac{\beta_1 }{ 10} } ]  = 4 \pi r_2 ^2   [10^{\frac{\beta_2 }{ 10} } ]

        r_2 =  \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}

       substituting value

        r_2 =   \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}

        r_2  =  0.24 \  m

     

7 0
3 years ago
Fill in the term that best completes the statement.<br> Work transfers<br> between objects.
Otrada [13]

Answer:

<em><u>Energy is the term that best completes the statement.</u></em>

<em><u></u></em>

<em><u>Hope this helps!</u></em>

3 0
3 years ago
IS IT CORRECT I'LL MARK U BRAINLIST !!!
sineoko [7]
It is 66.1 :) You multiply all of them together
6 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is not a unit used to measure pressure?
    10·2 answers
  • The half-life of carbon-14 is 5370 years. The carbon-14 levels in a fossil indicate that 6 half-lives have passed. How old is th
    6·2 answers
  • The Kelvin scale begins at zero and goes up, 0 Kelvin is also known as _________.
    9·1 answer
  • What effect, if any, does the development of new areas of science and technology have on theories? Theories may change as a resu
    14·2 answers
  • As an object accelerates to a speed close to the speed of light, which of the following stays the same?
    13·2 answers
  • A car whose mass is 1000kg is traveling at a constant speed of 10 m/s2. Neglecting any friction, how much force will the engine
    5·1 answer
  • How much heat is absorbed from a 56.00 g sample of Mercury when its tempreature change is 289K?
    12·1 answer
  • A car travel at an average speed of 60km/h for 15 minutes how far does the car travel in 15min​
    12·1 answer
  • URGENT PHYSIC PLEASE.
    13·1 answer
  • Use the drop-down menus to complete the sentences.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!