<em>in Scientific method observation comes first,,,
hypothesis is a short time theory made on the basis of observation..
hypothesis depends upon observation...
you suggest any statement about the phenomenon that you felt either my your mind or senses that is hypothesis...</em>
Answer: So finally, the dimensional formula of the radius of gyration will be written as: [M0LT0]. The power of zero on the dimension of the mass and time shows that the mass and the time dimensions are zero for the radius of gyration. Hope this helps (:
Answer:
8 x 10⁻⁷ x I / r
Explanation:
Two parallel long wires are carrying current I . Let the direction be towards the right in the farthest and towards the left in the nearest. Magnetic field due to current I at a distance d is given by the expression
B = μ₀ 2 I / 4π d
I the present case distance d = r/2
Magnetic field due to one wire at point d = r/2 is
B₁ = μ₀ 2 I / (4π r / 2 )
= 10⁻⁷ x 4I / r
Magnetic field due to the other wire at point d = r/2 is
B₂ = μ₀ 2 I / (4π r / 2 )
= 10⁻⁷ x 4I / r
Direction of magnetic field due to both the wires at the mid point P will be same . It will be in downward direction in the given scenario
So total magnetic field
B = B₁ + B₂
= 2 x 10⁻⁷ x 4I / r
= 8 x 10⁻⁷ x I / r
Answer:
<h2>Person A will hit a distance father</h2>
Explanation:
Based on the fact that the velocity of person A is more than that of person B, that is from the question, person A has a velocity of 2m/s and person B has a velocity of 1m/s, this clearly shows that person A has the tendency to hit a distance farther from the cliff than person B.
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.