The formula for kinetic energy = ½m·v<span>2
1/2 * 55 kg x 5,87 m/s ^2 = 27.5 x </span>34.4569 = <span>947.56475 Joule </span>≈ 948 J
Check the attached file for the solution for this problem.
Answer:
The maximum current, in amperes, that a conductor can carry continuously under the conditions of abuse without exceeding its temperature rating.
Answer:
The hollow cylinder rolled up the inclined plane by 1.91 m
Explanation:
From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

moment of inertia, I, of a hollow cylinder = ¹/₂mr²
substitute for I in the equation above;


given;
v₁ = 5.0 m/s
vf = 0
g = 9.8 m/s²

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m
Answer:

Explanation:
The strength of the electric field produced by a charge Q is given by

where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is

and the fish can detect the electric field at a distance of

Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:
