A. If the collision is perfectly inelastic then it follows the equation,
m1v1 + m2v2 = (m1 + m2)(v3)
Substituting,
(1250 kg)(32 m/s) + (875 kg)(25 m/s) = (1250 kg + 875 kg)(v3)
The value of v3 from the equation is 29.12 m/s.
B. The kinetic energy is calculated through the equation,
KE = 0.5mv²
Using this equation to solve for the total kinetic energies before and after the collision,
Before collision:
KE = 0.5(1250 kg)(32 m/s)² + (0.5)(875 kg)(25 m/s)²
KE = 913437.5 J
After collision:
KE = (0.5)(1250 kg + 875 kg)(29.12 m/s)²
KE = 900972.8 J
The difference is equal to 12464.7 J
Answer:
d.Energy as heat transferred into an object is determined by the amount of work done on the object.
Explanation:
Mass multiplied by the speed of light.
Answer:
Metal or conductors , what they do is that they allow full flow of current that is conduction is due to free electrons only and there is literally no gap between valence and conduction band,so free electrons can easily jump into conduction band from valence band.
And now lets talk about insulators,what they do is that they don’t allow any current to flow i.e they act as strong dielectric,and gap between valence band and conduction band is so big that free electron can never come into conduction band from valence band ever if they try is for eternity…
But semiconductors can act both as an insulator as well as a conductor based on the voltage input. Hence, there is a possibility to control the current flow in semiconductors , so they don’t just relax and let the current pass by, they can control it, and that is why you can design logic circuits with it.
But as the temperature increases free electrons from valence band of insulators can jump to conduction band and can cause a little conductivity, and then the insulator will act as a semi-conductor.