1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
3 years ago
12

A constant force of 4.0 N acts on a variety of objects. The greatest acceleration will occur in the object that has

Physics
2 answers:
svlad2 [7]3 years ago
4 0

Answer:

Its the LEAST inertia

Explanation:

Trust me I pressed more inertia and got it wrong

aleksandr82 [10.1K]3 years ago
3 0
I think it  will be the one with the more  inertia 

im not sure but hope this somewhat helped 
You might be interested in
A car starts from rest and accelerates uniformly at 2.0 m/s2 toward the north. A second car starts from rest 4.0 s later at the
yKpoI14uk [10]

Answer:

the correct solution is 13 s

Explanation:

This is a kinematic problem, let's use accelerated rectilinear motion relationships.

For the first car it has an accelerometer of 2.0 m/s²

       x = v₀₁ t + ½ a₁ t²

The second car leaves the same point, but 4.0 seconds later

       x = v₀₂ (t-4) + ½ a₂ (t-4)²

With this form we use the same time for both cars.

The initial speeds are zero for both vehicles leave the rest, at the point where they are located has the same position

        x = ½ a₁ t²

        x = ½ a₂ (t-4)²

Let's solve

       a₁  t² = a₂ (t-4)²

      a₁/a₂ t² = t² -2 4 t + 16

      t² (1- 2.0 / 4.0) - 8 t +16

      t² 0.5 - 8 t +16 = 0

      t² -16 t + 32 = 0

Let's solve the second degree equation

     t = [16 ±√( 16² - 4 32)] / 2  

     t = ½ (16 ± 11,3)

Solutions

     t1 = 13.66 s

     t2 = 2.34 s

These are the mathematical solutions for the meeting point, but car 2 leaves after 4 seconds, so the only solution is 13.66 s

the correct solution is 13 s, if you have to select one the nearest 12s

6 0
3 years ago
Which element could provide one atom to make an ionic bond with nitrogen?​
aev [14]

Answer:

boron

aluminum

gallium

indium

thallium

Explanation:

Any of these could work. Nitrogen has 5 valence electrons so you just needed to pick an element that has 3 valence electrons that nitrogen could borrow. This periodic table shows valence electron counts:

8 0
3 years ago
Please help me to do this problem
Novosadov [1.4K]

Answer:

we got time and velocity over time.

so the distance is again the area underneath the graph

for a triangle with known base and height it's

4*10 / 2

distance traveled is 20

deceleration occurs when velocity decreases. that happens from t=2 till t=4

in 2 time-units we loose 10 units of velocity, so we decelerate by 5 units per 1 time

a (from t=2 to t=4) = -5v/t

7 0
3 years ago
A uniformly charged, one-dimensional rod of length L has total positive charge Q. Itsleft end is located at x = ????L and its ri
GREYUIT [131]

Answer:

|\vec{F}| = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}(\ln(L+x_0)-\ln(x_0))

Explanation:

The force on the point charge q exerted by the rod can be found by Coulomb's Law.

\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^2}\^r

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.

In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.

We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.

Applying Coulomb's Law:

d\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{qdq}{x + x_0}(\^x)

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.

Now, we have to write 'dq' in term of the known quantities.

\frac{Q}{L} = \frac{dq}{dx}\\dq = \frac{Qdx}{L}

Now, substitute this into 'dF':

d\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{qQdx}{L(x+x_0)}(\^x)

Now we can integrate dF over the rod.

\vec{F} = \int{d\vec{F}} = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}\int\limits^{L}_0 {\frac{1}{x+x_0}} \, dx = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}(\ln(L+x_0)-\ln(x_0))(\^x)

4 0
3 years ago
There is much debate about whether or not global warming exists and whether people and their actions are to blame. High levels o
sergiy2304 [10]
<span>C) Humans and their activities do not affect the natural cycles of the Earth

you can think that </span>Humans and their activities do not affect the natural cycles of the Earth.
4 0
3 years ago
Read 2 more answers
Other questions:
  • What must you learn before you ca calculate you target heart rate for exercise
    5·1 answer
  • How is the direction of light changed when it travels from an optically denser medium to an optically rarer medium????? please a
    10·1 answer
  • Two identical cylindrical vessels with their bases at the same level each contain a liquid of density 1.23 g/cm3. The area of ea
    13·1 answer
  • A player kicks a soccer ball from ground level and sons at flying at an angle of 30° at a speed of 26MS how far did the ball tra
    15·1 answer
  • If the architectural plans show the rough opening of a window to be 3'-3" x 4'-9" , the height of the opening should actually me
    7·1 answer
  • A current of 5.0 a flows through an electrical device for 10 seconds. how many electrons flow through this device during this ti
    6·1 answer
  • If the voltage in a circuit is 24 V and the current is 2 A, what is the total power in the circuit?
    9·2 answers
  • What happens to water when it changes to ice?
    8·2 answers
  • A posição de um veículo no trecho reto de uma estrada, durante um certo tempo e a partir de um estabelecido referencial, tem a s
    15·1 answer
  • What do these two changes have in common?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!