Answer:
pH = 4.8
Explanation:
A buffer is formed by a weak acid (0.145 M HC₂H₃O₂) and its conjugate base (0.202 M C₂H₃O₂⁻ coming from 0.202 M KC₂H₃O₂). The pH of a buffer system can be calculated using Henderson-Hasselbalch's equation.
![pH = pKa + log\frac{[base]}{[acid]} \\pH = -log(1.8 \times 10^{-5} )+log(\frac{0.202M}{0.145M} )\\pH=4.8](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%5C%5CpH%20%3D%20-log%281.8%20%5Ctimes%2010%5E%7B-5%7D%20%29%2Blog%28%5Cfrac%7B0.202M%7D%7B0.145M%7D%20%29%5C%5CpH%3D4.8)
bitly coin downloadExplanatibitly coin downloadon:
Answer:
30.3 g
Explanation:
At STP, 1 mol of any gas will occupy 22.4 L.
With the information above in mind, we <u>calculate how many moles are there in 32.0 L</u>:
- 32.0 L ÷ 22.4 L/mol = 1.43 mol
Then we <u>calculate how many moles would there be in 16.6 L</u>:
- 16.6 L ÷ 22.4 L/mol = 0.741 mol
The <u>difference in moles is</u>:
- 1.43 mol - 0.741 mol = 0.689 mol
Finally we <u>convert 0.689 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 0.689 mol * 44 g/mol = 30.3 g
Answer:
massive flooding occurs in may at this location
Explanation:
i did the quiz idk if its right though :/