1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
7

Express answer in exact form.

Mathematics
2 answers:
zepelin [54]3 years ago
7 0
I'm guessing that you want to find the segment area of a circle that has a radius AO = 8" and a chord AB with a length of 8".

Sine angle AOD = AE / OA
Sine angle AOD = 4 / 8
Sine angle AOD = .5
arc sine (.5) = 30 degrees
So, angle AOB = 60 degrees

Circle Area = PI * radius^2
Circle Area = <span> <span> <span> 201.06</span></span></span>
Sector Area = (60/360) * 201.06
Sector Area = 33.51

Line OE^2 =  AO^2 -AE^2
Line OE^2 =  64 -16
Line OE = <span> <span> <span> 6.9282032303 </span> </span> </span>

Triangle AOB Area = OE*AE = <span> <span> <span> 6.9282032303 * 4
</span></span></span>Triangle AOB Area =  <span> <span> <span> 27.7128129211 </span> </span> </span>

Segment Area = Sector Area -Triangle AOB Area
Segment Area = 33.51 -<span>27.71
</span>Segment Area = 5.80

Sedaia [141]3 years ago
6 0

A=(64/6  pie  18~3) inches 2

You might be interested in
What is 1 and 5/6 as a decimal?
balandron [24]

Answer: 1.83

Step-by-step explanation:

Hope this helps!

8 0
3 years ago
The following table shows the distance from Tessa's house to several different locations.
alekssr [168]
The mean absolute deviation of the data set is 4
6 0
1 year ago
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
11. Find the roots of x2 - 8x + 4 = 0, in simplest radical form.
Art [367]

Answer: -6=-4 or x=2,3

Step-by-step explanation:

8 0
3 years ago
You are opening a snow cone stand. Your cups, which are shaped like a cone, are 4" tall and have a 6" diameter. How much room is
aleksley [76]

Answer:

I'm not too sure but I think it's 37.7

Step-by-step explanation:

radius of the base times height is supposed to equal the volume but I'm bad at geometry

3 0
2 years ago
Other questions:
  • How do you solve this
    9·1 answer
  • Which values make the inequality 3x – 8 ≤ 46 true?
    12·1 answer
  • WILL GIVE A BRAINLIEST TO THE CORRECT ANSWER PLEASE HELP!!
    7·1 answer
  • It takes Mara 50 minutes to walk to her friend’s house 1 2/3 mikes away. What is her walking pace in miles per hour
    9·1 answer
  • F(x)= (x-1)(x(x+1)+2x) find all rational zeros​
    12·1 answer
  • HEY PLEASE HELPP!!!!!!
    11·2 answers
  • Calculate.<br><br> <img src="https://tex.z-dn.net/?f=%5Csqrt%7B%28-4.5%29%5E%7B4%7D%20%7D" id="TexFormula1" title="\sqrt{(-4.5)^
    8·1 answer
  • Help me please I will give 20 points and mark u as brainliest
    14·1 answer
  • Solve: √x+1=√x+6=1
    7·1 answer
  • If AC=19 and BC=7, find the length of AB.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!