Answer:
v = 2.18m/s
Explanation:
In order to calculate the speed of Betty and her dog you take into account the law of momentum conservation. The total momentum before Betty catches her dog must be equal to the total momentum after.
Then you have:
(1)
M: mass Betty = 40kg
m: mass of the dog = 15kg
v1o: initial speed of Betty = 3.0m/s
v2o: initial speed of the dog = 0 m/s
v: speed of both Betty and her dog = ?
You solve the equation (1) for v:

The speed fo both Betty and her dog is 2.18m/s
Answer:
140°
Explanation:
The law of reflection states that the angle of redlection equals to the angle of incidence.
When light rays hit surface at 20°, they also leave the surface at the same angle
Since the whole surface has 180° then subtracting these two angles from total angle gives the the angle between the incident and reflected rays.
180°-20°-20°=140°
The angle of incidence and reflection are equal hence 140/2=70°
The question needed the angle between the incident and reflected rays which is already calculated as 140°
Supplementary angles add up to 180°.
If one is 40°, then the other is (180° - 40°) = 140° .
None of those choices describes a plane.
Choice 'C' is the only example of a plane.
Answer:
Explanation:
A mass of 700 kg will exert a force of
700 x 9.8
= 6860 N.
Amount of compression x = 4 cm
= 4 x 10⁻² m
Force constant K = force of compression / compression
= 6860 / 4 x 10⁻²
= 1715 x 10² Nm⁻¹.
Let us take compression of r at any moment
Restoring force by spring
= k r
Force required to compress = kr
Let it is compressed by small length dr during which force will remain constant.
Work done
dW = Force x displacement
= -kr -dr
= kr dr
Work done to compress by length d
for it r ranges from 0 to -d
Integrating on both sides
W = 
= [ kr²/2]₀^-4
= 1/2 kX16X10⁻⁴
= .5 x 1715 x 10² x 16 x 10⁻⁴
= 137.20 J