Answer:
The mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Moment before = Moment after

where;
I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²
substitute this in the above equation;
![m = \frac{ 0.027[3(2 \pi) - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B%200.027%5B3%282%20%5Cpi%29%20%20-%202%282%20%5Cpi%29%5D%7D%20%7B0.2%5E2%20%2A%206%5Cpi%20%7D%20%3D%20%5Cfrac%7B%200.027%5B6%20%5Cpi%20%20-%204%5Cpi%5D%7D%20%7B0.2%5E2%20%2A%204%5Cpi%20%7D%5C%5C%5C%5Cm%20%3D%200.3375kg)
Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Answer:
The toy car
Explanation:
the real car is parked so yeah but maybe in some way technically the real car has more "momentum"
See coulomb's law. Force is inversely proportional to the distance squared. So if you multiply r by 2, the force is multiplied by (½)² = ¼.
a. F/4
Answer:
The answer is 3.111111.
Explanation:
It runs 28 m in the first 9 s, and 28 divided by 9 equals 3.1 and the one goes on forever.