Answer:
d) shortening the string
Explanation:
Time period of a pendulum clock is dependent on two factors namely:length and acceleration due to gravity.
When a clock loses time, the time period of the pendulum clock increases.
This however can be corrected by decreasing the length of the pendulum.The time period of the pendulum clock is not dependent on the mass of the bob. The time period of the pendulum clock can be corrected only by changing the length of the pendulum string.
Answer:
Explanation:
Let the angle between the first polariser and the second polariser axis is θ.
By using of law of Malus
(a)
Let the intensity of light coming out from the first polariser is I'
.... (1)
Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.
By the law of Malus

So,



(b)
Now differentiate with respect to θ.


Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12
Answer:
the answer should be 550 j because i just did it
Explanation:
all you have to do is add all of them up and get your answer
Uh it’s D i’m pretty sure