Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.
Answer:

Explanation:
As the path is straight, so the speed is equivalent to velocity. Now. assuming that the acceleration and deceleration of the train are constant. So, change of velocity with respect to time for acceleration as well as deceleration is constant. Hence, the slope of the speed-time graph is constant for the time of acceleration as well as deceleration. The speed for the time from
to
is constant, so slope for this interval of time is zero. The speed-time graph is shown in the figure.
The total distance covered by the train during the entire journey is the area of the speed-time graph.
Area


As velocity is in
and time is in
so the unit of area is 
Hence, the total distance is
.
Magnitude of acceleration = (change in speed) / (time for the change).
Change in speed = (27 - 0) = 27 m/s
Time for the change = 10 s
Magnitude of acceleration = (27 m/s) / (10 s) = 2.7 m/s² .
Answer:
33.6 Ns backward.
Explanation:
Impulse: This can be defined as the product of force and time. The S.I unit of impulse is Ns.
From Newton's second law of motion,
Impulse = change in momentum
I = mΔv................................. Equation 1
Where I = impulse, m = mass of the skater, Δv = change in velocity = final velocity - initial velocity.
Given: m = 28 kg, t = 0.8 s, Δv = -1.2-0 = -1.2 m/s (Note: the initial velocity of the skater = 0 m/s)
Substituting into equation 1
I = 28(-1.2)
I = -33.6 Ns
Thus the impulse = 33.6 Ns backward.
We will apply the Newton's second Law so the we will be able to find the acceleration.
F (tot) = ma
a = F(tot) / m
a = 32.0 N / 65.0 kg = 0.492 m/s^2
Approximately 0.492 m/s^2 is her initial acceleration if she is initially stationary and wearing steel-bladed skates.