The distance travelled during the given time can be found out by using the equations of motion.
The distance traveled during the time interval is "13810.8 m".
First, we will find the deceleration of the motorcycle by using the first <em>equation of motion</em>:

where,
vi = initial velocity = (518 km/h)
= 143.89 m/s
vf = final veocity = 60 % of 143.89 m/s = (0.6)(143.89 m/s) = 86.33 m/s
a = deceleration = ?
t =time interval = 2 min = 120 s
Therefore,

a = -0.48 m/s²
Now, we will use the second <em>equation of motion </em>to find out the distance traveled (s):

<u>s = 13810.8 m = 13.81 km</u>
<u />
Learn more about the equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion.
The answer is A.
Sy = 1650 x sin30.5 = 837.4 m toward south
Sx = 1650 x cos30.5 = 1421.7 m toward east
<span>The element bromine has two isotopes: Br-79 and Br-81, with a 50%-50% isotopic abundance. Statistically, 25% of bromine molecules will be Br79-Br79, 25% will be Br81-Br81 and 50% will be Br79-Br81. This is equivalent to a ratio of 1:1:2 or 1:2:1. The peaks in a mass spectrum just like chromatography reflect this relative abundance of different isotopic combinations.</span>
Explanation:
This should be of help:
An atom is made up of three subatomic particles:
- Protons are the positively charged particles.
- Electrons are the negatively charged particles.
- Neutrons do not carry any charges.
A neutral atom is an atom that has not lost or gained any amount of electrons.
In a neutral atom;
the number of protons and electrons are the same
Usually atoms are designated this way:
ᵃₙX
where X is the symbol of the atom
a is the mass number of the atom
n is the atomic number of the atom
The mass number = number of protons + number of neutrons
Atomic number = number of protons
Note; atomic number is the same as the number protons and the number of electrons in a neutral atom.
Use this guide to solve the problem
Learn more:
Atomic number brainly.com/question/5425825
#learnwithBrainly