1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
5

Which of the following is the same in all frames of reference?

Physics
1 answer:
Ksju [112]3 years ago
4 0
The correct option is B.
The length of an object, the mass of an object and the rate of time passage for an object can change depending on the situation which the object is subject to. For instance in space, the mass and the velocity of an object usually change. But, the value of the speed of light in the space is the same for all observers regardless of the motion of an object, that is, the speed of light is a constant.<span />
You might be interested in
Briefly describe the characteristics of each soil horizon from the top layer to the bottom layer
inna [77]
<span>There is six horizen. 1. O Horizon - The top, organic layer of soil, 2. A Horizon - The layer called topsoil; 3. E Horizon - This layer is beneath the A Horizon and above the B Horizon. It is made up mostly of sand. 4. B Horizon - Also called the subsoil - this layer is beneath the E Horizon and above the C Horizon. 5. C Horizon - it's called regolith: the layer beneath the B Horizon and above the R Horizon. 6 R Horizon - this is last and the unweathered rock layer that is beneath all the other layers.</span>
7 0
3 years ago
Which of the following should NOT be discussed during safety training
Juli2301 [7.4K]
Is there suppose to be an image?
7 0
3 years ago
A ball with an initial velocity of 8.00 m/s rolls up a hill without slipping. (a) Treating the ball as a spherical shell, calcul
GrogVix [38]

Answer:

Part i)

h = 5.44 m

Part ii)

h = 3.16 m

Explanation:

Part i)

Since the ball is rolling so its total kinetic energy in this case will convert into gravitational potential energy

So we have

\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = mgh

here we know that for spherical shell and pure rolling conditions

v = R \omega

I = \frac{2}{3}mR^2

\frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{3}mR^2)(\frac{v^2}{R^2}) = mgh

\frac{5}{6}mv^2 = mgh

h = \frac{5v^2}{6g}

h = \frac{5(8^2)}{6(9.81)} = 5.44 m

Part b)

If ball is not rolling and just sliding over the hill then in that case

\frac{1}{2}mv^2 = mgh

h = \frac{v^2}{2g}

h = \frac{8^2}{2(9.81)} = 3.16 m

3 0
3 years ago
What is the numerical value, in meters per second squared, of the acceleration of an object experiencing true free fall?
Nuetrik [128]

Answer:

9.8 m/s/s

Explanation:

The numerical value, in meters per second squared, of the acceleration of an object experiencing true free fall is 9.8 m/s/s. This is called the acceleration due to gravity.

8 0
3 years ago
Read 2 more answers
Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
zhuklara [117]

Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.

The distance of the earth from the sun is 1.50 \times 10^{11}\;\rm m.

<h3>What is Kepler's third law?</h3>

Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

T^2 \propto R^3

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.

By using Kepler's third law, this can be written as,

T^2 \propto R^3

T^2 = kR^3

Substituting the values, we get the value of constant k for mars.

687^2 = k\times (2.279 \times 10^{11})^3

k = 3.92 \times 10^{-29}

The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.

365^3 = 3.92\times 10^{-29} R^3

R^3 = 3.39 \times 10^{33}

R= 1.50 \times 10^{11}\;\rm m

Hence we can conclude that the distance of the earth from the sun is 1.50 \times 10^{11}\;\rm m.

To know more about Kepler's third law, follow the link given below.

brainly.com/question/7783290.

6 0
2 years ago
Other questions:
  • A 160 g basketball has a 32.7 cm diameter and may be approximated as a thin spherical shell. Starting from rest, how long will i
    12·1 answer
  • Can somebody please help me!
    10·1 answer
  • A regular atom has a net charge of _____
    12·1 answer
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • if the volume of a scuba tank filled with air remains constant and its temperature goes down, what happens to its pressure?
    13·1 answer
  • A space probe is directly between two moons of a planet. If it is twice as far from moon A as it is from moon B, but the net for
    9·1 answer
  • 12. Energy from the breaking of atomic bonds in molecules (ex: C4 explosion)
    14·1 answer
  • You are researching a fungus that can kill banana plants. Which source is
    6·1 answer
  • Can someone help me please
    7·1 answer
  • A uniform soda can of mass 0.140 kg is 12.0 cm tall and filled with 0.354 kg of soda (Fig. 9-41). Then small holes are drilled i
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!