The units for molarity is moles of solute per liter of solution which means if you multiply the molarity of a solution by its volume you get how many moles of solute are in the solution. (0.75Mx0.5L=0.375mol NaCl)
Then you can multiply the moles of sodium chloride (0.375 mol) by its molar mass (58.45 g/mol) to get 21.92g of sodium chloride. That means there is 21.92 grams of sodium chloride in 500mL of 0.75M solution. I hope this helps. Let me know if anything is unclear.
<u>Answer:</u> The rate law expression for the given reaction is written below.
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^2[H_2]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BH_2%5D%5E2)
Hence, the rate law expression for the given reaction is written above.
Answer:
NaHCO₃
Explanation:
Sodium bicarbonate (baking soda) is a chemical compound with the formula NaHCO₃.
Answer: 1.997 M
Explanation:
molarity = moles of solute/liters of solution or 
first we have to find our moles of solute (mol), which you can find by dividing the mass of solute by molar mass of solute
mass of solute: 92 g
molar mass of solute: 46.08 g/mol
let's plug it in:

next, we plug it into our original equation:

Sorry no se inglés
Bdnnfncnfnfnfn