Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Here are the answers:
1. False - Molecules is the smallest part of an element that behaves like the element.
2. False - The nucleus contains both protons and neutrons
3. True
4. True
5. A. Nucleus
6. D. Neutron
7. B. Protons and Neutrons
8. C. Electron
9. C. 6
10. C.6
Answer:

Explanation:
given,
86 out of every 100 TV households have at least one remote control
Probability of any material is calculated by.



now, Calculating probability that at least one remote control
q = 1 - 0.86
q = 0.14


C.
Explanation: Because mirrors are lighter, and they are easier than lenses to make perfectly smooth.