As we know the property of charge that charge is always conserved
so we can say

here we know that total charge is

and we also know that

from above equation we can say


so the other charge will be -6 C
Answer:
reviewing the opinion of the two students we see that neither is right, since when the kinetic energy increases the potential energy decreases by the same value
Explanation:
For this exercise we must use the law of conservation of energy.
Starting point. Resting electron
Em₀ = U = eV
the potential difference and the electric field are related
V = - E d
Final point. When leaving the electric field
= K = ½ m v²
Em₀ = Em_{f}
e E d = ½ m v²
From this expression we see that when an electron moves from the initial point to the final point, the potential energy must decrease, for the total energy to be constant.
When reviewing the opinion of the two students we see that neither is right, since when the kinetic energy increases the potential energy decreases by the same value
Answer:

Given:
Mass (m) = 6 kg
Speed (v) = 4 m/s
To Find:
Kinetic energy (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:



