Im not 100% sure, but I think the answer is C. If not, Im sorry for bothering you.
Answer:
8.28 MPa
Explanation:
From the question given above, the following data were obtained:
Radius (r) = 2×10¯³ m
Force applied (F) = 104 N
Pressure (P) =?
Next, we shall determine the area of the nail (i.e circle). This can be obtained as follow:
Radius (r) = 2×10¯³ m
Area (A) of circle =?
Pi (π) = 3.14
A = πr²
A = 3.14 × (2×10¯³)²
A = 3.14 × 4×10¯⁶
A = 1.256×10¯⁵ m²
Next, we shall determine the pressure. This can be obtained as follow:
Force applied (F) = 104 N
Area (A) = 1.256×10¯⁵ m²
Pressure (P) =?
P = F / A
P = 104 / 1.256×10¯⁵
P = 8280254.78 Nm¯²
Finally, we shall convert 8280254.78 Nm¯² to MPa. This can be obtained as follow:
1 Nm¯² = 1×10¯⁶ MPa
Therefore,
8280254.78 Nm¯² = 8280254.78 Nm¯² × 1×10¯⁶ MPa / 1 Nm¯²
8280254.78 Nm¯² = 8.28 MPa
Thus, the pressure exerted on the wall is 8.28 MPa
We are given with the mass of Arsine (
The mass of arsine is 15g
there is a relation between moles, mass and molar mass of any compound which is
The molar mass of Arsine = atomic mass of As + 3X atomic mass of H
the molar mass of Arsine = 74.92 + 3X 1 = 77.92 g/mol
Let us calculate the moles as
Answer:
81 °C
Explanation:
This is a calorimetry question so a few things you will need for this. The calorimetry equation q=mcΔT & the specific heat of water (4.2J/g•°C). Other definitions are:
q = heat added/released by a sample
m = mass of sample
c=specific heat of sample
ΔT = change in temperature
from here we can rearrange the equation to state:
q/(mc) = ΔT
1200J/((20.0g)(4.2J/g•°C)) = ΔT
14°C = ΔT
If the starting temperature was 95.0°C and we know that the temperature was cooled by 14°C then the final temperature of the water would be 81.
Answer:
Element
Explanation:
Each different kind of atom represents an atom. Elements like atoms are considered to be distinct substances that cannot be split into simpler substances. Such substances are known to be made up of just one kind of atom.
Like an atom, elements are made up of protons, neutrons and electrons. Both the protons and neutrons are found in the nucleus of the atom.