Answer:
148 grams of relative atomic mass
Explanation:
magnesium atomic mass : 24
nitrogen : 14
oxygen : 16
24 × 1
14 × 1 × 2
16 × 3 × 2
24 + 28 + 80 = 148 grams
Answer:
The ozone layer
Explanation:
It acts as a shield to protect the earth's surface from the suns harmful ultraviolet radiation.
Answer:
The concentration of COF₂ at equilibrium is 0.296 M.
Explanation:
To solve this equilibrium problem we use an ICE Table. In this table, we recognize 3 stages: Initial(I), Change(C) and Equilibrium(E). In each row we record the <em>concentrations</em> or <em>changes in concentration</em> in that stage. For this reaction:
2 COF₂(g) ⇌ CO₂(g) + CF₄(g)
I 2.00 0 0
C -2x +x +x
E 2.00 - 2x x x
Then, we replace these equilibrium concentrations in the Kc expression, and solve for "x".
![Kc=8.30=\frac{[CO_{2}] \times [CF_{4}] }{[COF_{2}]^{2} } =\frac{x^{2} }{(2.00-2x)^{2} } \\8.30=(\frac{x}{2.00-2x} )^{2} \\\sqrt{8.30} =\frac{x}{2.00-2x}\\5.76-5.76x=x\\x=0.852](https://tex.z-dn.net/?f=Kc%3D8.30%3D%5Cfrac%7B%5BCO_%7B2%7D%5D%20%5Ctimes%20%5BCF_%7B4%7D%5D%20%7D%7B%5BCOF_%7B2%7D%5D%5E%7B2%7D%20%7D%20%3D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%282.00-2x%29%5E%7B2%7D%20%7D%20%5C%5C8.30%3D%28%5Cfrac%7Bx%7D%7B2.00-2x%7D%20%29%5E%7B2%7D%20%5C%5C%5Csqrt%7B8.30%7D%20%3D%5Cfrac%7Bx%7D%7B2.00-2x%7D%5C%5C5.76-5.76x%3Dx%5C%5Cx%3D0.852)
The concentration of COF₂ at equilibrium is 2.00 -2x = 2.00 - 2 × 0.852 = 0.296 M
<u>Answer:</u> The correct answer is Option C.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of sodium bicarbonate and acetic acid is given as:

Ionic form of the above equation follows:

As, sodium and acetate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the correct answer is Option C.
We can assume that the volume of one mole of any gas (within reason) is 22.4 L only if we know that the pressure of the gas is 1 atmosphere (101 kPa) and that the temperature of the gas is zero degrees Celsius (273 K). These are known as standard temperature and pressure (STP). So if the gas in question happens to be at STP then the calculation would be:
3.00 L x 1 mol/22.4 L = 0.134 mol
And 3.00 litres CO2 or any other gas at STP would contain 0.134 moles. If the gas was at some other temperature or pressure, assuming they were “moderate,” you could calculate the number of moles by solving the following formula for n.
PV =nRT Where P is pressure, V is volume, T is temperature in Kelvin and R is the ideal gas constant consistent with the units of volume and pressure used.